Электрические печи сопротивления управление регулирование. Изучение режимов работы электрической печи сопротивления и электрической схемы управления. Разновидности тиристоров отличаются между собой

Управление мощностью печей сопротивления

Существует 2 принципиально различных подхода к управлению мощностью:

1) Непрерывное управление, при котором в печь можно ввести любую требуемую мощность.

2) Ступенчатое управление, при котором в печь можно вводить лишь дискретный ряд мощностей.

Первый требует плавного регулирования напряжения на нагревателях. Такое регулирование может быть осуществлено с помощью любой разновидности силовых усилителœей (генератор, тиристорный выпрямитель, ЭМУ). На практике наиболее распространены тиристорные источники питания, построенные по схеме ТРН. Такие регуляторы основаны на свойствах тиристоры, включенного в цепь переменного тока последовательно с активным сопротивлением нагревателя. Тиристорные источники питания содержат встречно-параллельно соединœенные тиристоры, снабженные СИФУ.

Угол управления a, а следовательно, и эффективное напряжение на нагрузке зависит от внешнего напряжения, подаваемого на источник. Важно заметить, что для снижения влияния отключения питающего напряжения на тепловой режим печи тиристорных источников питания обычно предусматривают отрицательную обратную связь по выходному напряжению. Тиристорные источники питания имеют высокий КПД (до 98%). Коэффициент мощности зависит от глубины регулирования выходного напряжения линœейно, при угле a меньше 0 – к М =1, при a = 180° к М = 0. Коэффициент мощности определяется не только сдвигом фаз напряжения и первой гармоники тока, но и величиной высших гармоник тока. По этой причине использование компенсирующих конденсаторов не позволяет сколько нибудь значительно повысить к М.

При втором способе изменяют напряжение на нагревателœе, производя переключение в силовых цепях печи. Обычно имеется 2-3 ступени возможного напряжения и мощности нагревателя. Наиболее распространен двухпозиционный способ ступенчатого управления. По этому способу печь либо включают в сеть на ее номинальную мощность, либо полностью отключают от сети. Требуемое значение средней мощности, вводимой в печь обеспечивают, изменяя соотношения времени включенного и отключенного состояния.

Средняя температура в печи соответствует средней мощности вводимой в печь. Резкие изменения мгновенной мощности приводят к колебаниям температуры около среднего уровня. Величина этих колебаний определяется величиной отклонений Р МГНОВ от среднего значения и величиной тепловой инœерции печи. В большинстве общепромышленных печей величина тепловой инœерции настолько велика, что колебание температуры из-за ступенчатого управления не выходит за пределы требуемого значения точности поддержания температуры. Конструктивно двухпозиционное управление может быть обеспечено либо посредством обычного контактора, либо тиристорного переключателя. Тиристорный переключатель содержит встречно-параллельно

Существуют также трехфазные переключатели. В них используют два блока из встречно-параллельно соединœенных тиристоров. Силовые цепи таких переключателœей построены по следующей схеме:

Имеются модификации тиристорных переключателœей, вообще не использующих контакты.

Тиристорные переключатели более надежны, чем контакторы, они искро- и взрывобезопасны, бесшумны в работе, немного дороже.

Ступенчатое регулирование имеет КПД близкое к 1, к М »1.

В. Крылов

В настоящее время тиристоры находят широкое применение в различных устройствах автоматического контроля, сигнализации и управления. Тиристор представляет собой управляемый полупроводниковый диод, которому свойственны два устойчивых состояния: открытое, когда прямое сопротивление тиристора весьма мало и ток в его цепи зависит в основном от напряжения источника питания и сопротивления нагрузки, и закрытое, когда его прямое сопротивление велико и ток составляет единицы миллиампер.

На рис. 1 показана типовая вольтамперная характеристика тиристора, где участок О А соответствует закрытому состоянию тиристора, а участок БВ - открытому.

При отрицательных напряжениях тиристор ведет себя как обычный диод (участок ОД).

Если увеличивать прямое напряжение на закрытом тиристоре при токе управляющего электрода, равном нулю, то при достижении величины Uвкл тиристор откроется. Такое переключение тиростора называют переключением по аноду. Работа тиристора при этом аналогична работе неуправляемого полупроводникового четырехслойного диода - динистора.

Наличие управляющего электрода позволяет открывать тиристор при анодном напряжении, меньшем Uвкл. Для этого необходимо по цепи управляющий электрод - катод пропустить ток управления Iу. Вольтамперная характеристика тиристора для этого случая показана на рис. 1 пунктиром. Минимальный ток управления, необходимый для открывания тиристора, называется током спрямления Iспр. Ток спрямления сильно зависит от температуры. В справочниках он указывается при определенном анодном напряжении. Если за время действия тока управления анодный ток превысит значение тока выключения Iвыкл, то тиристор останется открытым и по окончании действия тока управления; если же этого не произойдет, то тиристор снова закроется.

При отрицательном напряжении на аноде тиристора подача напряжения на его управляющий электрод не допускается. Недопустимо также на управляющем электроде отрицательное (относительно катода) напряжение, при котором обратный ток управляющего электрода превышает несколько миллиампер.

Открытый тиристор можно перевести в закрытое состояние, только снизив его анодный ток до величины, меньшей Iвыкл. В устройствах постоянного тока для этой цели используются специальные гасящие цепочки, а в цепи переменного тока тиристор закрывается самостоятельно в момент перехода величины анодного тока через нуль.

Это является причиной наиболее широкого применения тиристоров в цепях переменного тока. Все рассматриваемые ниже схемы имеют отношение только к тиристорам, включенным в цепь переменного тока.

Для обеспечения надежной работы тиристора источник управляющего напряжения должен удовлетворять определенным требованиям. На рис. 2 показана эквивалентная схема источника управляющего напряжения, а на рис. 3 - график, с помощью которого можно определить требования к его нагрузочной прямой.


На графике линии А и Б ограничивают зону разброса входных вольтамперных характеристик тиристора, представляющих собой зависимости напряжения на управляющем электроде Uу от тока этого электрода Iу при разомкнутой анодной цепи. Прямая В определяет минимальное напряжение Uу, при котором открывается любой тиристор данного типа при минимальной температуре. Прямая Г определяет минимальный ток Iу, достаточный для открывания любого тиристора данного типа при минимальной температуре. Каждый конкретный тиристор открывается в определенной точке своей входной характеристики. Заштрихованная зона является геометрическим местом таких точек для всех тиристоров данного типа, удовлетворяющих техническим условиям. Прямые Д и Е определяют максимально допустимые значения напряжения Uу и тока Iу соответственно, а кривая К - максимально допустимое значение мощности, рассеиваемой на управляющем электроде. Нагрузочная прямая Л источника управляющего сигнала проведена через точки, определяющие напряжение холостого хода источника Еу.хх и его ток короткого замыкания Iу.кз= Eу.хх/Rвнутр, где Rвнутр- внутреннее сопротивление источника. Точка S пересечения нагрузочной прямой Л с входной характеристикой (кривая М) выбранного тиристора должна находиться в области, лежащей между заштрихованной зоной и линиями А, Д, К, Е и Б.

Эта область носит название предпочтительной области открывания. Горизонтальная прямая Н определяет наибольшее напряжение на управляющем переходе, при котором не открывается ни один тиристор данного типа при максимально допустимой температуре. Таким образом, эта величина, составляющая десятые доли вольта, определяет максимально допустимую амплитуду напряжения помехи в цепи управления тиристором.

После открывания тиристора цепь управления не влияет на его состояние, поэтому управление тиристором может осуществляться импульсами небольшой длительности (десятки или сотни микросекунд), что позволяет упростить схемы управления и снизить мощность, рассеиваемую на управляющем электроде. Длительность импульса, однако, должна быть достаточной для нарастания анодного тока до величины, превышающей ток выключения Iвыкл при различном характере нагрузки и режиме работы тиристора.

Сравнительная простота устройств управления при работе тиристоров в цепях переменного тока обусловила широкое применение этих приборов в качестве регулирующих элементов в устройствах стабилизации и регулирования напряжения. Среднее значение напряжения на нагрузке при этом регулируют изменением момента подачи (то есть фазы) управляющего сигнала относительно начала полупериода питающего напряжения. Частота следования управляющих импульсов в таких схемах должна быть синхронизирована с частотой сети.

Существует несколько методов управления тиристорами, из которых следует отметить амплитудный, фазовый и фазо-импульсный.

Амплитудный метод управления заключается в том, что на управляющий электрод тиристора подают положительное напряжение, изменяющееся по величине. Тиристор открывается в тот момент, когда это напряжение становится достаточным для протекания через управляющий переход тока спрямления. Изменяя напряжение на управляющем электроде, можно изменять момент открывания тиристора. Простейшая схема регулятора напряжения, построенная по этому принципу, приведена на рис. 4.


В качестве управляющего напряжения здесь используется часть анодного напряжения тиристора, то есть напряжения положительного полупериода сети. Резистором R2 изменяют момент открывания тиристора Д1 и, следовательно, среднее значение напряжения на нагрузке. При полностью введенном резисторе R2 напряжение на нагрузке минимально. Диод Д2 защищает управляющий переход тиристора от обратного напряжения. Следует обратить внимание на то, что цепь управления подключена не непосредственно к сети, а параллельно тиристору. Сделано это для того, чтобы открытый тиристор шунтировал цепь управления, не допуская бесполезного рассеивания мощности на ее элементах.

Основными недостатками рассматриваемого устройства являются сильная зависимость напряжения на нагрузке от температуры и необходимость индивидуального подбора резисторов для каждого экземпляра тиристора. Первое объясняется температурной зависимостью тока спрямления тиристоров, второе - большим разбросом их входных характеристик. Кроме того, устройство способно регулировать момент открывания тиристора только в течение первой половины положительного полупериода напряжения сети.

Управляющее устройство, схема которого приведена на рис. 5, позволяет расширить диапазон регулирования до 180°, а включение тиристора в диагональ выпрямительного моста - регулировать напряжение на нагрузке в течение обоих полупериодов напряжения сети.

Конденсатор С1 заряжается через резисторы R1 и R2 до напряжения, при котором через управляющий переход тиристора протекает ток, равный току спрямления. При этом тиристор открывается, пропуская ток через нагрузку. Благодаря наличию конденсатора напряжение на нагрузке меньше зависит от колебаний температуры, но тем не менее и этому устройству присущи те же недостатки.

При фазовом методе управления тиристорами с помощью фазовращательного моста изменяют фазу управляющего напряжения относительно напряжения на аноде тиристора. На рис. 6 приведена схема однополупериодного регулятора напряжения, в котором изменение напряжения на нагрузке осуществляется резистором R2, включенным в одно из плеч моста, с диагонали которого напряжение поступает на управляющий переход тиристора.


Напряжение на каждой половине обмотки III управления должно быть приблизительно 10 в. Остальные параметры трансформатора определяются напряжением и мощностью нагрузки. Основным недостатком фазового метода управления является малая крутизна управляющего напряжения, из-за чего стабильность момента открывания тиристора получается невысокой.

Фазо-импульсный метод управления тиристорами отличается от предыдущего тем, что с целью повышения точности и стабильности момента открывания тиристора на его управляющий электрод подают импульс напряжения с крутым фронтом. Этот метод получил в настоящее время наибольшее распространение. Схемы, реализующие этот метод, отличаются большим разнообразием.

На рис. 7 приведена схема одного из самых простых устройств, использующих фазо-импульсный метод управления тиристором.

При положительном напряжении на аноде тиристора Д3 конденсатор С1 заряжается через диод Д1 и переменный резистор R1. Когда напряжение на конденсаторе достигнет напряжения включения динистора Д2, он открывается и конденсатор разряжается через управляющий переход тиристора. Этот импульс разрядного тока открывает тиристор Д3 и через нагрузку начинает протекать ток. Изменяя резистором R1 ток заряда конденсатора, можно изменять момент открывания тиристора в пределах полупериода напряжения сети. Резистор R2 исключает самооткрывание тиристора Д3 за счет токов утечки при повышенной температуре. По техническим условиям при работе тиристоров в ждущем режиме установка этого резистора обязательна. Приведенная на рис. 7 схема не нашла широкого применения из-за большого разброса величины напряжения включения динисторов, доходящего до 200%, и значительной зависимости напряжения включения от температуры.

Одной из разновидностей фазо-импульеного метода управления тиристорами является получившее в настоящее время наибольшее распространение так называемое вертикальное управление. Оно заключается в том, что на входе генератора импульсов производится сравнение (рис. 8) постоянного напряжения (1) и напряжения, изменяющегося по величине (2). В момент равенства этих напряжений генерируется импульс (3) управления тиристором. Переменное по величине напряжение может иметь синосоидальную, треугольную или пилообразную (как показано на рис. 8) форму.


Как видно из рисунка, изменение момента возникновения управляющего импульса, то есть сдвиг его фазы, может производиться тремя различными способами:

изменением скорости нарастания переменного напряжения (2а),

изменением его начального уровня (2б) и

изменением величины постоянного напряжения (1а).

На рис. 9 показана структурная схема устройства, реализующего вертикальный метод управления тиристорами.

Как и любое другое устройство фазо-импульсного управления, оно состоит из фазосдвигающего устройства ФСУ и генератора импульсов ГИ. Фазосдвигающее устройство, в свою очередь, содержит входное устройство ВУ, воспринимающее напряжение управления Uу, генератор переменного (по величине) напряжения ГПН и сравнивающее устройство СУ. В качестве названных элементов могут быть использованы самые различные устройства.

На рис. 10 приведена принципиальная схема устройства управления тиристором (Д5), включенным последовательно с мостовым выпрямителем (Д1 - Д4).


Устройство состоит из генератора пилообразного напряжения с транзисторным коммутатором (Т1), триггера Шмитта (Т2, Т3) и выходного ключевого усилителя (Т4). Под действием напряжения, снимаемого с синхронизирующей обмотки III трансформатора Тр1, транзистор Т1 закрыт. При этом конденсатор С1 заряжается через резисторы R3 и R4. Напряжение на конденсаторе возрастает по экспоненциальной кривой, начальный участок которой с некоторым приближением можно считать прямолинейным (2, см. рис. 8).

При этом транзистор Т2 закрыт, а Т3 открыт. Ток эмиттера транзистора Т3 создает на резисторе R6 падение напряжения, которое определяет уровень срабатывания триггера Шмитта (1 на рис. 8). Сумма напряжений на резисторе R6 и открытом транзисторе Т3 меньше, чем напряжение на стабилитроне Д10, поэтому транзистор Т4 закрыт. Когда напряжение на конденсаторе С1 достигает уровня срабатывания триггера Шмитта, транзистор Т2 открывается, а Т3 закрывается. Транзистор T4 при этом открывается и на резисторе R10 появляется импульс напряжения, открывающий тиристор Д5 (импульс 3 на рис. 8). В конце каждого полупериода напряжения сети транзистор T1 открывается током, протекающим через резистор R2. Конденсатор С1 при этом разряжается практически до нуля и устройство управления возвращается в исходное состояние. Тиристор закрывается в момент перехода амплитуды анодного тока через нуль. С началом следующего полупериода цикл работы устройства повторяется.

Изменяя сопротивление резистора R3, можно изменять ток заряда конденсатора С1, то есть скорость нарастания напряжения на нем, а значит, и момечт появления открывающего тиристор импульса. Заменив резистор R3 транзистором, можно автоматически регулировать напряжение на нагрузке. Таким образом, в этом устройстве использован первый из названных выше способов сдвига фазы управляющих импульсов.

Небольшое изменение схемы, показанное на рис. 11, позволяет получить регулирование по второму способу. В этом случае конденсатор С1 заряжается через постоянный резистор R4 и скорость нарастания пилообразного напряжения во всех случаях одинакова. Но при открывании транзистора T1 конденсатор разряжается не до нуля, как в предыдущем устройстве, а до напряжения управления Uу.
Следовательно, и заряд конденсатора в очередном цикле начнется с этого уровня. Изменяя напряжение Uу, регулируют момент открывания тиристора. Диод Д11 отключает источник напряжения управления от конденсатора во время его заряда.


Выходной каскад на транзисторе T4 обеспечивает необходимое усиление по току. Используя в качестве нагрузки импульсный трансформатор, можно одновременно управлять несколькими тиристорами.

В рассматриваемых устройствах управления к управляющему переходу тиристора напряжение приложено в течение отрезка времени от момента равенства постоянного и пилообразного напряжений до окончания полупериода напряжения сети, то есть до момента разряда конденсатора C1. Уменьшить длительность управляющего импульса можно включением дифференцирующей цепочки на входе усилителя тока, выполненного на транзисторе Т4 (см. рис. 10).

Одним из вариантов вертикального метода управления тиристорами является число-импульсный метод. Его особенность состоит в том, что на управляющий электрод тиристора подают не один импульс, а пачку коротких импульсов. Длительность пачки равна длительности управляющего импульса, показанного на рис. 8.

Частота следования импульсов в пачке определяется параметрами генератора импульсов. Число-импульсный метод управления обеспечивает надежное открывание тиристора при любом характере нагрузки и позволяет уменьшить мощность, рассеиваемую на управляющем переходе тиристора. Кроме этого, если на выходе устройства включен импульсный трансформатор, возможно уменьшить его размеры и упростить конструкцию.

На рис. 12 приведена схема управляющего устройства, использующего число-импульсный метод.


В качестве узла сравнения и генератора импульсов здесь применен балансный диодно-регенеративный компаратор, состоящий из схемы сравнения на диодах Д10, Д11 и собственно блокинг-генератора, собранного на транзисторе Т2. Диоды Д10, Д11 управляют работой цепи обратной связи блокинг-генератора.

Как и в предыдущих случаях, при закрытом транзисторе Т1 начинается заряд конденсатора С1 через резистор R3. Диод Д11 открыт напряжением Uу, а диод Д10 закрыт. Таким образом, цепь обмотки IIa положительной обратной связи блокинг-генератора разомкнута, а цепь обмотки IIб отрицательной обратной связи замкнута и транзистор Т2 закрыт. Когда напряжение на конденсаторе С1 достигнет напряжения Uу, диод Д11 закроется, а Д10 откроется. Цепь положительной обратной связи окажется замкнутой, и блокинг-генератор начнет вырабатывать импульсы, которые с обмотки I трансформатора Тр2 будут поступать на управляющий переход тиристора. Генерация импульсов будет продолжаться до конца полупериода напряжения сети, когда откроется транзистор T1 и конденсатор С1 разрядится. Диод Д10 при этом закроется, а Д11 откроется, блокинг-процесс прекратится, и устройство вернется в исходное состояние. Изменяя напряжение управления Uу, можно изменять момент начала генерации относительно начала полупериода и, следовательно, момент открывания тиристора. Таким образом, в данном случае используется третий способ сдвига фазы управляющих импульсов.

Применение балансной схемы узла сравнения обеспечивает температурную стабильность его работы. Кремниевые диоды Д10 и Д11 с малым обратным током позволяют получить высокое входное сопротивление сравнивающего узла (около 1 Мом). Поэтому он не оказывает практически никакого влияния на процесс заряда конденсатора С1. Чувствительность узла весьма высока и составляет несколько милливольт. Резисторы R6, R8, R9 и конденсатор С3 определяют температурную стабильность рабочей точки транзистора Т2. Резистор R7 служит для ограничения коллекторного тока этого транзистора и улучшения формы импульса блокинг-генератора. Диод Д13 ограничивает выброс напряжения на коллекторной обмотке III трансформатора Тр2, возникающий при закрывании транзистора. Импульсный трансформатор Тр2 можно выполнить на ферритовом кольце 1000НН типоразмера К15Х6Х4,5. Обмотки I и III содержат по 75, а обмотки II а и II б - по 50 витков провода ПЭВ-2 0,1.

Недостатком этого устройства управления является сравнительно низкая частота следования импульсов (примерно 2 кгц при длительности импульса 15 мксек). Увеличить частоту можно, например, уменьшив сопротивление резистора R4, через который разряжается конденсатор С2, но при этом несколько ухудшается температурная стабильность чувствительности сравнивающего узла.

Число-импульсный метод управления тиристорами можно использовать и в рассмотренных выше (рис. 10 и 11) устройствах, поскольку при определенном выборе номиналов элементов (С1, R4- R10, см. рис. 10) триггер Шмитта при напряжении на конденсаторе С1, превышающем уровень срабатывания триггера, генерирует не одиночный импульс, а последовательность импульсов. Их длительность и частота следования определяются параметрами и режимом триггера. Такое устройство получило название «мультивибратор с разрядным триггером».

В заключение следует отметить, что значительное схемное упрощение устройств управления тиристорами при сохранении высоких качественных показателей может быть достигнуто с помощью однопереходных транзисторов.

Мощность современных электрических печей сопротивления колеблется от сотен ватт до нескольких мегаватт.

Печи мощностью более 20 кВт выполняются трехфазными при равно­мерном распределении нагрузки по фазам и подключаются к сетям 220, 380, 660 В непосредственно или через печные трансформаторы (или автотранс­форматоры).

Применяемое в электрических печах сопротивления электрооборудование включает 3 группы: силовое электрооборудование, аппаратура управления и контрольно-измерительная (КИП).

К силовому электрооборудованию относятся

Силовые понижающие трансформаторы и регулировочные авто­трансформаторы,

Силовые электроприводы вспомогательных механизмов,

Силовая коммутационная и защитная аппаратура.

К аппаратуре управления относятся комплектные станции управления с коммутационной аппаратурой. Переключатели, кнопки, реле, конечные выключатели, электромагнитные пускатели, реле применяются обычного исполнения.

К КИП относятся приборы (устройства) контроля, измерения и сигна­лизации. Обычно вынесены на щит. Каждая печь сопротивления должна быть обязстельно оборудована пирометрическими материалами. Для мелких неответственных печей это может быть термопара с указывающим прибором, в большинстве промышленных печей обязательно автоматическое регулирование температуры. Оно осуществляется с помощью приборов, регистрирующих температуру печи.

Большинство электрических печей сопротивления не ну­ждаются в силовых трансформаторах.

Регулировочные трансформаторы и автотрансформаторы применяют, когда печь выполнена с нагревательными элементами, меняющими свое сопротивление в зависимости от температуры (вольфрамовые, графитовые, молибденовые), для питания со­ляных ванн и установок прямого нагрева.

Все промышленные печи сопротивления работают в режиме автомати­ческого регулирования температуры. Регулирование рабочей температуры в электрической печи сопротивления производится изменением подводимой мощности.

Регулирование подводимой к печи мощности может быть дискретным и непрерывным.

При дискретном регулировании возможны следующие способы:

Периодическое подключение и отключение электрической печи нагрева сопротивлением к сети (двухпозиционное регулирование);

Переключение нагревательных элементов печи со «звезды» на «треугольник», либо с последо­вательного соединения на параллельное (трехпозиционное регулиро­вание).

Наибольшее распространение получило двухпозиционное регулирова­ние, так как способ прост и позволяет автоматизировать процесс.

По этому способу печь либо включают в сеть на ее номинальную мощность, либо полностью отключают от сети. Требуемое значение средней мощности, вводимой в печь обеспечивают, изменяя соотношения времени включенного и отключенного состояния.


Средняя температура в печи соответствует средней мощности вводимой в печь. Резкие изменения мгновенной мощности приводят к колебаниям температуры около среднего уровня. Конструктивно двухпозиционное управление может быть обеспечено либо посредством обычного контактора, либо тиристорного переключателя. Тиристорный переключатель содержит встречно-параллельно соединенные тиристоры, работающие с a=0.

При непрерывном регулировании происходит плавное регулирование напряжения на нагревателях. Такое регулирование может быть осуществлено с помощью любой разновидности силовых усилителей. На практике наиболее распространены тиристорные регуляторы напряжения. Тиристорные источники питания содержат встречно-параллельно соединенные тиристоры, снабженные СИФУ.

Тиристорные источники питания имеют высокий КПД (до 98%).




Силовые блоки

Для управления печами мы предлагаем типоряд силовых блоков, интегрированных с микропроцессорным температурным ПИД-контроллером

ТЕРМОЛЮКС-011. Силовые блоки поставляются в полностью готовом для работы виде, требуют только подключения к сети и к печи (нагревателям). Силовые блоки построены на основе оптотиристорных модулей типа МТОТО или тиристорных модулей типа МТТ класса не менее 10. Управление реализуется без каких либо дополнительных устройств типа блоков ФИМ, ФИУ, БУС, БУТ – контролер сразу передает сигнал на исполнительный элемент (тиристор, симистор, оптотиристор, оптосимистор).

Блоки отличаются малыми габаритами и весом, могут быть установлены в любом месте рядом с печью. Блоки окрашиваются порошковой краской, в блоке устанавливается охлаждающий вентилятор.

Типы силовых блоков

Тип блока Фазность 1Ф/3Ф Тип соединения нагрузки Максимальный ток в фазе
1Ф-25А Y/Δ 25А
1Ф-40А Y/ Δ 40А
1Ф-63А Y/ Δ 63А
1Ф-80А Y/ Δ 80А
1Ф - 125А Y/ Δ 125А
1Ф - 160А Y/ Δ 160А
1Ф - 250А Y/ Δ 250А
1Ф - 400А Y/ Δ 400А
1Ф - 630А Y/ Δ 630А
3Ф-25А Y/ Δ 25А
3Ф-40А Y/ Δ 40А
3Ф-63А Y/ Δ 63А
3Ф-80А Y/ Δ 80А
3Ф - 125А Y/ Δ 125А
3Ф - 160А Y/ Δ 160А
3Ф - 250А Y/ Δ 250А
3Ф - 400А Y/ Δ 400А
3Ф - 630А Y/ Δ 630А

В силовых схемах допускается применение только соединения «разомкнутый треугольник». Также, силовые блоки могут быть изготовлены для двухфазной нагрузки в корпусах как стандартного размера, так и с габаритами по требованию заказчика.

Микропроцессорные ПИД-контроллеры температуры «Термолюкс»

На все наше электротермическое оборудование устанавливается контроллер «Термолюкс»-011 или «Термолюкс»-021, если иное не обговорено с заказчиком оборудования.

Краткие характеристики и основные преимущества контроллера « Термолюкс»- 011:

Основные достоинства контроллера «Термолюкс» определяются тем, что данный контроллер был разработан как специализированный прибор именно для управления печами сопротивления. Прибор предназначен для работы с любыми типами нагревателей – как со статической зависимостью сопротивления от температуры (проволочные и карбид-кремниевые нагреватели), так и убывающей (хромит-лантановые нагреватели) и возрастающей (дисилицид молибдена, молибден, вольфрам). В приборе реализован фазо-импульсный метод управления мощностью (ФИМ), подаваемой на нагреватели печи, что позволяет увеличить ресурс нагревателей на 30% по сравнению с методом широтно-импульсной модуляции (ШИМ) управления мощностью, который реализован во всех остальных ПИД-регуляторах, присутствующих на рынке.





Метод управления ФИМ позволяет добиться плавной подачи мощности, исключая резкие скачки температуры на самом нагревателе, а также позволяет более точно регулировать температуру по сравнению с методом широтно-импульсной модуляции (ШИМом).

Прибор «Термолюкс» подает мощность на нагреватель 100 раз в секунду, благодаря чему нагреватель разогревается плавно, и не успевает остыть до включения очередной подачи тока. При этом нагреватели не испытывают дополнительных напряжений, и работают в очень мягком режиме, что способствует увеличению срока службы.

Практически все остальные программируемые контролеры работают методом широтно-импульсной модуляции (ШИМ), при которой мощность подается по схеме «полностью открыть/полностью закрыть»; при этом на нагреватель поступает сразу 100% мощности. При таком режиме работы нагреватели испытывают редкие мощные удары, соответственно срок службы нагревателя сокращается.

Управление реализуется без каких либо дополнительных устройств типа блоков ФИМ, ФИУ, БУС, БУТ – контроллер сразу передает сигнал на исполнительный элемент (тиристор, семистор, оптотиристор, оптосемистор), вне зависимости от типа нагрузки – одно- или трехфазной, схемы соединения нагрузки “звезда” или “треугольник”. Выбор типа нагрузки производится оператором программно, с экрана контроллера, без каких-либо физических действий и без установки дополнительных устройств.

Приборы имеют выход по шине RS-232 для подключения приборов к компьютеру, что позволяет получить на дисплее график процесса нагрева и остывания в реальном времени.

Прибор позволяет осуществлять управление процессом термообработки через ПК, сохранять данные, как в табличном, так и в графическом виде. Табличные данные при этом могут быть переведены в формат EXCEL с возможностью последующего редактирования.

График технологического процесса в реальном времени

Все приборы имеют возможность задания оператором 16 различных программ нагрева-выдержки-остывания печи, каждая из которых (программ) состоит из 10 произвольных точек в координатах время-температура. Прибор имеет адаптивный алгоритм управления - прибор сам в автоматическом режиме постоянно исследует систему печь+загрузка, и определяет необходимые коэффициенты системы, без участия оператора. Благодаря наличию адаптивного алгоритма, прибор можно без перенастройки использовать на любых печах.

Контроллер тепловых процессов "Термолюкс" имеет следующие характеристики:

  • дискретность задания температуры – 1?С;
  • дискретность задания времени – 1 минута;
  • возможность задания неограниченного времени поддержания конечной температуры;
  • разрешающая способность измерения температуры – 0,1 гр С;
  • контроль обрыва термопары;
  • наличие режима ручного управления мощностью;
  • возможность ограничение выходной мощности;
  • возможность ограничения максимальной температуры объекта;
  • возможность работы с любыми термопарами, в том числе ВР ИР во всем диапазоне рабочих температур термопары. Программируемый переход от одного типа термопары к другому с экрана прибора;
  • возможность работы с пирометром вместо термопары;
  • расположение датчика термокомпенсации на колодке термопарного шнура прибора, что позволяет уйти от необходимости использования термокомпенсационных проводов;
  • возможность записи циклограмм на ПК;
  • возможность задания программы и изменения параметров с ПК

Контроллер «Термолюкс» -021

При управлении печами с нагревателями, имеющими возрастающий характер зависимости сопротивления от температуры (дисилицид-молибденовые нагреватели, молибден, вольфрам), то есть имеющих очень низкое сопротивление при комнатных температурах, нагреватели при низких температурах потребляют очень большой ток, существенно превышающий критическое значение тока нагревателя. Если ток не будет ограничен тем или иным способом, это неизбежно приведет к выходу нагревателей из строя. В общем случае ток ограничивают установкой в блок управления печью дополнительных мощных дорогостоящих устройств ограничения тока. Прибор «Термолюкс» -021 позволяет построить систему управления нагревом подобных печей без установки устройств ограничения тока.

Дополнительно ко всем функциям контроллера «Термолюкс» -011 в контроллере «Термолюкс» -021 реализована возможность постоянного измерения тока, подаваемого в нагрузку (организована обратная связь по току). Это позволяет программно ограничить максимальный ток через нагреватели. Контроллер “учитывает” данное ограничение при подаче мощности на нагреватели и не позволяет току превышать заданное оператором значение, тем самым обеспечивая функционирование нагревателей в безопасном режиме. При этом часто прибор «Термолюкс» -021 позволяет отказаться от использования трансформаторов с переключаемыми вручную обмотками, а иногда и вовсе отказаться от использования трансформаторов, что приводит к существенному снижению стоимости оборудования.

Приборы « Термолюкс»- 011 и «Термолюкс» -021 сертифицированы Федеральным Агентством по Техническому Контролю и Метрологии как “ИЗМЕРИТЕЛЬ-РЕГУЛЯТОР” температуры, сертификат RU.C.32.010.A N 22994, зарегистрирован в Государственном реестре средств измерений под N 30932-06.

Система управления печи


Все управление технологическим процессом осуществляется оператором с сенсорного экрана промышленного компьютера.Все управление печью осуществляется автоматической системой управления, построенной на базе промышленного компьютера. Промышленный компьютер снабжен 17-ти дюймовым сенсорным экраном (Типа Тач-Пэд), на который выводится вся информация о техпроцессе. В основном режиме на экране изображена мнемосхема управления печью.

Управление нагревом осуществляется при помощи микропроцессорного ПИД-регулятора «Термолюкс-021»

Контроллеры « ТЕРМОДАТ»

К основным достоинствам данного прибора следует отнести:

  • наличие большого экрана;
  • наглядное представление информации и техпроцессе;
  • наличие встроенной памяти для архивации данных о техпроцессах;
  • многоканальность – возможность управления несколькими независимыми зонами печи используя один прибор.

К недостаткам прибора можно отнести:

  • метод управления мощностью – релейный или ШИМ (широтно-импульсная модуляция);
  • необходимость установки в силовой блок дополнительных устройств:
  • для управления печью методом ФИМ, необходимо устанавливать дорогостоящие тиристорные регуляторы типа «Звел»;
  • для управления методом ШИМ необходимо устанавливать промежуточный блок управления тиристорами типа «БУТ-3».
  • необходимость установки в силовой блок дополнительного устройства ограничения тока, при работе с печами с нагревателями из дисилицид- молибдена, молибдена, вольфрама.


«
Термодат-16Е5»
- одноканальный программный ПИД-регулятор температуры и электронный самописец с графическим 3,5" дисплеем. Прибор имеет универсальный вход, предназначенный для подключения термопар или термосопротивлений, а также датчиков с токовым выходом. Разрешение 1°С или 0,1°С задается пользователем. Может управлять как нагревателем, так и охладителем. Интуитивно понятное управление обеспечивается 4 кнопками внизу экрана.

Характеристики:

  • ПИД-регулятор
  • Электронный самописец
  • Графический дисплей
  • Регулирование по программе
  • ПИД-закон регулирования, автоматическая настройка коэффициентов
  • Универсальный вход
  • Логический (дискретный) вход
  • Выходы: релейный, симисторный, транзисторный, аналоговый
  • Интерфейс для связи с компьютером RS485
  • Аварийная сигнализация
  • Прочный металлический корпус, размер 1/4 DIN (96х96х82мм)

Предназначен для:

  • Замены устаревших самописцев
  • Регулирования температуры по заданной программе
  • Измерения и регистрации температуры
  • Аварийной сигнализации

Кроме вышеописанных приборов управления по заданию заказчика мы установим любой требуемый Вам прибор.


Пирометры


Это идеальный прибор для бесконтактного измерения температуры в промышленности, на транспорте и ЖКХ. Пирометры «Кельвин» обеспечивают высокоточный оперативный контроль температуры, а так же возможность управления печами по данному сигналу в диапазоне от -40 до 2200 о С в местах, где установка термопары по каким-либо причинам затруднена, а также в области температур, выходящих за пределы измерения термопар, труднодоступных местах.

Технические характеристики:

  • Диапазон измерения температуры: -40…+2200°С
  • Диапазон рабочих температур: -40°…+70°С
  • Погрешность измерения: 1%+1°С
  • Время измерения: 0,15 сек
  • Разрешение: 1°С
  • Показатель визирования: 1:200
  • Диапазон установки излучательной способности: 0,01 … 1,00
  • Спектральный диапазон: 1,0 - 1,6 мкм
  • Выходной цифровой интерфейс: RS232 9600 бод
  • Стандартная длина линии связи датчик-пульт: 3 м (максимальная длина: 20 м)
  • Габаритные размеры пульта: 120x120x60мм
  • Степень защиты от пыли и влаги: IP65

Амперметры « OMIX»


Серия однофазных/трехфазных амперметров Omix выполнена в корпусах из высококачественного пластика, с одним или тремя светодиодным индикаторами для отображения измеренных значений силы тока.

Характеристики прибора:

Прямое включение – 0…10 А

Через стандартный ТТ – 0…1 МА

  • Точность измерения

0.5%+1 е.м.р.

  • Скорость измерения

3 изм/с.

  • Напряжение питания

U пит. = 220 В

Условия эксплуатации -15…+50 о С

Вольтметры « OMIX»


Серия однофазных/трехфазных вольтметров Omix выполнена в корпусах из высококачественного пластика, с одним или тремя светодиодным индикаторами для отображения измеренных значений напряжения.

Характеристики прибора:

  • Диапазон измерения напряжения

Прямое включение – 0…500 В

Через стандартный ТН – 0…380 кВ

  • Точность измерения

0.5%+1 е.м.р.

  • Скорость измерения

3 изм/с

  • Напряжение питания

U пит. = 220 В

  • Условия эксплуатации

15…+50 о С


Тиристорные регуляторы напряжения «ZVEL»

предназначены для установки внутрь электромонтажных шкафов. Линейка регуляторов рассчитана на трехфазную нагрузку с током до 1000 А. Имеет однофазное/трехфазное исполнение.

Функциональность регуляторов ZVEL характеризуется наличием сервисных функций:


  • жидко-кристаллический дисплей с индикацией токов нагрузки, задающего сигнала и кодов ошибок;
  • функция ограничения тока;
  • кнопочная панель для программирования уставок;
  • электронные защиты от короткого замыкания, перегрузки и перегрева;
  • автодиагностика пробоя тиристоров;
  • контроль подключения нагрузки;
  • защита от повреждения в нагрузке (несимметрия токов);
  • потеря фазы или “слипание” фаз;
  • способы управления мощностью – фазо-импульсный или пропуском периодов(программируется);

Усилитель «У13М»

Предназначены для управления мощностью электрической нагрузки в однофазных цепях переменного тока (для трехфазной нагрузки необходимо три прибора) за счет фазо-импульсной модуляции (ФИМ) от аналоговых входных сигналов. Прибор имеет обратную связь по сетевому напряжению, что позволяет осуществлять особо точную регулировку мощности на нагрузке.

Характеристика:

  • Преобразование входного сигнала постоянного тока (напряжения постоянного тока) в выходную мощность (фазоимпульсное управление);
  • Формирование режима запрета включения тиристоров;
  • Обеспечение линейной зависимости величины выходной мощности, выделяемой на нагрузке, от величины входного сигнала. Для управления большой мощностью предусмотрена возможность подключения внешнего блока мощных тиристоров;
  • Гальваническая развязка входных и выходных сигналов

Термопары


Термоэлектрические преобразователи (термопары) – устройство для измерения температуры в камере печи. Представляет собой 2 спаянных между собой с одного конца проволоки различного химического состава. При этом не спаянные концы должны находиться вне камеры (в холодной зон
е), а спай в камере (в горячей зоне).

Компания «Термокерамика» изготавливает термопары различных длин следующих типов:

  • ТХА – хромель алюмель
  • ТВР – вольфрам-рений
  • ТПП – платина-платинародий
  • ТПР – платинародий-платинародий
Марка Тип Материал 1 Материал 2 Температура применения, о С Примечание
ТХА 0292 К

Сплав Хромель

(Ni-90.5, Cr-9.5%)

Сплав Алюмель (Ni-94.5, Al-5.5,Si, Mn, Co) 0-1300
ТПП 0392 S

Сплав Платина-Родий

(Pt-87%, Rh-13%)

Платина (Pt) 0-1400
ТПР 0392 В

Сплав Платина-Родий

(Pt-70%, Rh-30%)

Сплав Платина-Родий (Pt-94%, Rh-6%) 600-1800
ТВР 0392 А1

Сплав Вольфрам-Рений

(W-95%, Re-5%)

Сплав Вольфрам-Рений (W-80%, Re-20%) 0-2200 в неокислительных средах


Компенсационные провода (термопарные провода, термоэлектродные провода) используются для подключения термоэлектрических преобразователей (термопар) к измерительным приборам и преобразователям в целях уменьшения погрешности измерения. Так как термоэлектродные провода используются для удлинения выводов термоэлектрических преобразователей (термопар), их называют термоэлектродными удлинительными проводами.

  1. Токопроводящие многопроволочные жилы из сплава "ХА" - хромель-алюмель
  2. Изоляция из ПВХ пластиката И40-13А
  3. Оболочка из ПВХ пластиката И40-13А
  4. Экран

В электрических печах сопротивления в подавляющем большинстве случаев применяется простейший вид регулирования температуры - двухпозиционное регулирование , при котором исполнительный элемент системы регулирования - контактор имеет лишь два крайних положения: «включено» и «выключено».

Во включенном состоянии температура печи растет, так как ее мощность всегда выбирается с запасом, и соответствующая ей установившаяся температура значительно превосходит ее рабочую температуру. В выключенном состоянии температура печи снижается по экспоненциальной кривой.

Для идеализированного случая, когда в системе регулятор - печь отсутствует динамическое запаздывание, работа двухпозиционного регулятора показана на рис. 1, на котором в верхней части дана зависимость температуры печи от времени, а в нижней - соответствующее изменение ее мощности.

Рис. 1. Идеализированная схема работы двухпозиционного регулятора температуры

При разогреве печи вначале ее мощность будет постоянной и равной номинальной, поэтому ее температура будет расти до точки 1, когда она достигнет значения t зад + ∆t1 . В этот момент регулятор сработает, контактор отключит печь и ее мощность упадет до нуля. Вследствие этого температура печи начнет уменьшаться по кривой 1-2 до тех пор, пока не будет достигнута нижняя граница зоны нечувствительности. В этот момент произойдет новое включение печи, и ее температура вновь начнет увеличиваться.

Таким образом, процесс регулирования температуры печи по двухпозиционному принципу заключается в ее изменении по пилообразной кривой около заданного значения в пределах интервалов +∆t1 , -∆t1 определяемых зоной нечувствительности регулятора.

Средняя мощность печи зависит от соотношения интервалов времени ее включенного состояния и выключенного состояния. По мере прогрева печи и загрузки кривая нагрева печи будет идти круче, а кривая остывания печи - положе, поэтому отношение периодов цикла будет уменьшаться, а следовательно, будет падать и средняя мощность Рср.

При двухпозиционном регулировании средняя мощность печи все время приводится в соответствие с мощностью, необходимой для поддержания постоянной температуры. Зона нечувствительности современных терморегуляторов может быть сделана весьма малой и доведена до 0,1-0,2°С. Однако действительные колебания температуры печи могут быть во много раз большими из-за динамического запаздывания в системе регулятор - печь.

Основным источником этого запаздывания является инерция датчика - термопары, особенно если она снабжена двумя защитными чехлами, керамическим и металлическим. Чем больше это запаздывание, тем больше колебания температуры нагревателя превышают зону нечувствительности регулятора. Кроме того, амплитуды этих колебаний очень сильно зависят от избытка мощности печи. Чем больше мощность включения печи превышает среднюю мощность, тем больше эти колебания.

Чувствительность современных автоматических потенциометров очень высока и может удовлетворить любые требования. Инерция датчика, наоборот, велика. Так, стандартная термопара в фарфоровом наконечнике с защитным чехлом имеет запаздывание около 20-60 с. Поэтому в тех случаях, когда колебания температуры недопустимы, в качестве датчиков применяют незащищенные термоэлементы с открытым концом. Это, однако, не всегда возможно ввиду возможных механических повреждений датчика, а также попадания в приборы через термоэлемент токов утечки, вызывающих неправильную их работу.

Можно достичь уменьшения запаса мощности, если печь не включать и выключать, а переключать с одной ступени мощности на другую, причем высшая ступень должна быть лишь ненамного больше потребляемой печью мощности, а низшая - ненамного меньше. В этом случае кривые нагрева печи и ее остывания будут очень пологими и температура почти не будет выходить за пределы зоны нечувствительности прибора.

Для того чтобы осуществить такое переключение с одной ступени мощности на другую, необходимо иметь возможность плавно или ступенями регулировать мощность печи. Такое регулирование может быть осуществлено следующими способами:

1) переключение нагревателей печи, например, с «треугольника» на «звезду». Такое весьма грубое регулирование связано с нарушением равномерности температуры и применяется лишь в бытовых электронагревательных приборах,

2) включение последовательно с печью регулируемого активного или реактивного сопротивления. Этот способ связан с очень большими потерями энергии или снижением коэффициента мощности установки,

3) питание печи через регулировочный трансформатор или автотрансформатор с переключением печи на разные ступени напряжения. Здесь регулирование также ступенчатое и сравнительно грубое, так как регулируется питающее напряжение, а мощность печи пропорциональна квадрату этого напряжения. Кроме того, имеют место дополнительные потери (в трансформаторе) и снижение коэффициента мощности,

4) фазовое регулирование с помощью полупроводниковых приборов. В этом случае питание печи осуществляется через тиристоры, угол включения которых изменяется системой управления. Таким путем можно получить плавное регулирование мощности печи в широких пределах почти без дополнительных потерь, используя непрерывные методы регулирования - пропорциональный, интегральный, пропорционально-интегральный. В соответствии с этими методами для каждого момента времени должно выполняться соответствие поглощаемой печью мощности и мощности, выделяемой в печи.

Самый эффектный из всех из всех способов регулирования температурного режима в электрических печах - импульсное регулирование с использованием тиристорных регуляторов .

Процесс импульсного регулирования мощности печи представлен на рис. 2. Периодичность работы тиристоров выбирают в зависимости от тепловой инерционности электрической печи сопротивления.

Рис. 2. Тиристорный импульсный регулятор температуры электрической печи сопротивления

Выделяют три основных способа импульсного регулирования:

Импульсное регулирование при частоте коммутации - f к = 2f с (где f с - частота тока питающей сети) с изменением момента отпирания тиристора называется фазоимпульсным или фазовым (кривые 1),

Импульсное регулирование с повышенной частотой коммутации f к

Импульсное регулирование с пониженной частотой коммутации f к f с (кривые 3).

Похожие статьи

© 2024 videointercoms.ru. Мастер на все руки - Бытовая техника. Освещение. Металлобработка. Ножи. Электричество.