В каком веке появилась фотография. История фотографии. Самые первые снимки. Применение металлов – существенное упрощение процесса

Фотографию по праву считают одним из величайших изобретений прошлого века.

В 1826-м году создает первую фотографию реального окружения - вид из своего окна. Для этого понадобилась 8-часовая экспозиция.

(28 Март 1819 - 8 Август 1869) был пионером в сфере фотографии в Британии, и одним из первых военных фотографов. Он сыграл большую роль в общем развитии фотографии.

История изобретения и развития фотографии

В переводе с греческого языка слово "фотография" означает светопись. Фотография - это совокупность способов получения изображений в результате действия света на специальные светочувствительные материалы и последующей химической обработки этих материалов.

Изобретение "мгновенной" фотографии, то есть технологии, позволяющей запечатлеть мгновение на негативе, имело огромный успех в конце XIX века. Мода на фотографирование росла. Создавались ассоциации, объединявшие многочисленных любителей. Это движение получило название пикториализма - от английского слова picture, означающего "картинка". Один из пикториалистов, американец Альфред Штиглиц (1864-1946) продемонстрировал, что фотография позволяет отобразить все нюансы состояния атмосферы и времени года и суток в момент снимка. Эти пейзажи иногда напоминают живопись импрессионистов.

Изобретение фотографии стало возможным благодаря работам ученых и изобретателей многих стран мира. Ими изучалось действие света на светочувствительные вещества, разрабатывались способы йолучения с их помощью прочных светописных изображений и совершенствовалась камера-обскура (прибор - предшественник фотоаппарата; в дословном переводе означает "темная комната").

Еще в 350 г. до нашей эры известный древнегреческий философ Аристотель в одной из своих работ отметил, что свет, проникающий в темную комнату через небольшое отверстие в ставне, образует на противоположной стене изображение предметов, находящихся на улице перед окном. При этом масштаб изображения тем крупнее, чем дальше от окна находится стена. Этот эффект был использован для различных опытов и рисования.

Одно из наиболее ранних описаний камеры-обскуры (стенопа) принадлежит известному итальянскому художнику и ученому Леонардо да Винчи. О камере-обскуре писали также в" своих трудах многие другие исследователи.

На рис. изображен чертеж камеры-обскуры голдандского физика и математика Гемма Фризиуса, с помощью которой он в 1544 г. наблюдал солнечное затмение.

Позже эффект камеры-обскуры был использован в ряде конструкций переносных приборов. Некоторые из них внешне напоминали современные павильонные фотокамеры.

В 1568 г. венецианец Д. Барбаро впервые дал подробное описание камеры-обскуры с плоско-выпуклой линзой, позволяющей увеличить действующее отверстие для проникающих в камеру лучей и усилить яркость оптического изображения, получаемого с ее помощью.

Большая заслуга в совершенствовании оптической системы камеры-обскуры принадлежит известному немецкому астроному И. Кеплеру. В 1611 г. им была создана оптическая система, со-стоящая из вогнутой и выпуклой линз, позволившая увеличить угол поля зрения камеры-обскуры.

Важное значение имели также наблюдения за химическим действием света на различные вещества.

Известный русский государственный деятель и исследователь А. П. Бестужев-Рюмин наблюдал в 1725 г. изменение цвета хлорного железа, которое под действием света переходило в хлористое.

Первые целенаправленные исследования по изменению свойств солей серебра при воздействии на них света принадлежат немецкому ученому И. Шульце. В 1727 г. он обнаружил, что при пропитывании мела раствдром серебра в азотной кислоте смесь приобретает свойство изменять цвет в тех местах, где на нее действует солнечный свет.

Следующий важный шаг в расширении знаний о свойствах солей серебра был сделан шведским химиком К. Шееле, который в 70-х годах XVIII в. провел исследования по влиянию на соли серебра различных цветов солнечного спектра. При этом им было отмечено, что наибольшей активностью обладают лучи сине-фиолетовой зоны.

Исследования чувствительности различных, соединений к свету проводились в XVIII-XIX вв. и другими учеными.

Изобретению фотографии предшествовали работы англичан Т. Веджвуда и Г. Деви. В конце XVIII в. Т. -Веджвудом был проведен ряд экспериментов по получению светописных рисунков на бумаге и коже, покрытых нитратом серебра.

Т. Веджвуд был одним из первых исследователей, попытавшихся, хотя и не совсем удачно, получить изображение с помощью камеры-обскуры. Работы Т. Веджвуда были продолжены Г. Деви. Для получения изображения в" камере-обскуре им было использовано хлористое серебро. Несмотря на то что Т. Веджвуду и Г. Деви не удалось найти способа закрепления изображений, их по праву считают предвестниками изобретения фотографии.

Первым прочное изображение получил француз Жозеф Нисефор Ньепс. Впервые о новом способе им было сообщено в 1822 г. В 1829 г. была начата совместная работа Нисефора Ньепса с французским художником и изобретателем Луи Жаком Манде Дагером.

Способ Н. Ньепса, названный им гелиографией (солнце-писью), заключался в следующем: раствор, асфальта в лавандовом масле наносили тонким слоем на металлическую пластинку, затем на нее накладывали полупрозрачный штриховой рисунок и на длительное время оставляли его на свету, который задубливал асфальт в освещенных участках. После этого пластинку переносили в сосуд с лавандовым маслом, которое вымывало незадубившиеся участки асфальта, в результате чего получалось рельефное изображение. Используя его как клише, можно было делать типографские оттиски на бумаге. В 1826 г. Н. Ньепс применил камеру-обскуру для получения изображения на асфальтовом слое.

Изобретателем первого способа получения фотографических изображений: на фотослоях с галогенидамн серебра считается французский художник и изобретатель Жак Дагер. Пользуясь для рисования камерой-обскурой, он начал в 1824 г. искать средство для закрепления получаемого в нон изображения. В 1829- 1835 гг. Ж. Дагср проводил эту работу совместно с Н. Нъепсом. После смерти Н. Пьспса Ж. Дагер обнародовал новый оригинальный способ получения фотографических изображений и назвал его дагеротип.

Сообщение о новом изобретении было сделано 7 января 1839 г. известным физиком и астрономом Араго на заседании Парижской академии наук. Сущность способа была изложена 19 августа 1839 г. в докладе Араго объединенному собранию" Парижской академии наук и Академии изящных искусств. IX Международный конгресс научной и прикладной фотографии, проходивший в 1935 г., постановил считать 7 января 1839 г. юбилейной датой - днем изобретения фотографии.

Принцип получения фотографических изображений способом дагеротишш состоял в том, что серебряную пластинку сначала тщательно очищали, а затем помещали в специальный ящик над сосудом с металлическим подом. Испаряясь, йод оседал на ее поверхности и, взаимодействуя с серебром, давал йодистое серебро - вещество, чувствительное к свету. После этого в темноте пластинку помещали в кассету камеры-обскуры н на нее экспонировали ярко освещенные предметы с выдержкой в несколько минут. Под действием света на пластинке получалось слабое изображение. Его усиливали, т. е. проявляли парами ртути, которые оседали на участках, подвергшихся действию света. Этот процесс проводили в специальном ящике, на дне которого помещали сосуд с ртутью. Для ускорения процесса испарения ртути сосуд подогревали.

Для того чтобы удалить с неэкспонированных участков остатки подпетого серебра и закрепить тем самым изображение, пользовались раствором поваренной соли. Несколько позже для этих целей стали применять тиосульфат натрия.

Изображение на дагеротипе состояло из участков, покрытых тонким слоем ртути п серебра. При определенном угле наклона на дагеротппе было четко видно позитивное изображение.

Таким образом, в результате дагеротипного процесса получали снимок в одном экземпляре, что являлось одним из существенных его недостатков. Кроме того, следует указать на высокую стоимость снимков. Несмотря на эти недостатки, дагероти-пия очень быстро привлекла к себе внимание.

В 1840 г. английский исследователь Д. Ф. Годар сумел значительно повысить светочувствительность дагеротипных пластин, обрабатывая их смесью йода с бромом, что позволило уменьшить выдержки при экспонировании. Уменьшению выдержек способствовало также совершенствование съемочной оптики. Так, уже в 1840 г., т. е. через год после официального обнародоващш первого способа фотографии, профессором Венского университета И. Пецвалем был разработан метод расчета фотографических объективов. В этом же году им был рассчитан первый портретный объектив, построенный затем известным немецким оптиком П. Ф. Фохтлендером.

Большой вклад в развитие фотографии внес английский ученый Уильям Генри Фоке Талбот. Он получил сравнительно высокочувствительную бумагу, которую изготовил путем нанесения слоя раствора хлористой соли и последующего очувствления раствором азотнокислого серебра. Бумагу в сухом виде экспонировали в камере-обскуре. Получаемое изображение закрепляли в растворе поваренной соли. Этот способ, названный фото-генным рисованием, был изложен Талботом в его первом официальном сообщении Королевскому. обществу 31 января 1839 г.

Для печати с полученных при съемке бумажных негативов Талбот также использовал очувствленную бумагу, которую экспонировал под бумажным негативом на сильном свету. По достижении достаточной плотности изображения его закрепляли.

К этому периоду относится и появление терминов "фотография", "негатив", "позитив", предложенных английским ученым Д. Гершелем. Он также предложил использовать раствор тиосульфата натрия для закрепления фотографических изображений. Продолжая свои работы в области фотографии, Талбот в 1840 г. изобрел калот.ипнын процесс, суть которого сводилась к следующему. На лист бумаги наносили раствор азотнокислого серебра и после непродолжительной сушки погружали в раствор йодистого калия и высушивали. Далее бумагу покрывали раствором азотнокислого серебра, галловой и уксусной кислот и снова сушили. Этим же раствором бумагу проявляли после съемки. При этом на бумаге получали негативное изобра-oжение. Если негатив по плотностям был слабым, то его усиливали нагреванием. Для закрепления изображения Талбот сначала пользовался раствором бромистого калия, а позже раствором тиосульфата натрия. С получаемого таким способом негатива производилась контактная печать позитивных копий па бумаге, очувствленной и проявляемой таким же способом.

Следует отметить, что вплоть до 1851 г. дагеротипия оставалась наиболее конкурентоспособным способом фотографии. К этому времени английским исследователем Фридериком Скот Арчером был разработан новый способ фотографии - мокрый коллодионныйпроцесс.

Принцип мокрого коллодионного процесса состоит в следующем. Нитроклетчатку (продукт обработки отходов хлопка серной и азотной кислотами) растворяют в сме,си спирта и эфира. В полученную массу - коллодион - вводят соли йода и брома, и раствор поливают.на стеклянную пластинку. После того как слой слегка застынет, пластинку в сыром виде погружают в сосуд с растворим азотнокислого серебра, т. е. коллодионный слой очувствляют. Все операции проделывают при неактиничном освещении. В результате химической реакции в коллодионном слое образуются галогениды серебра - вещества, чувствительные к свету. После этого пластинку в сыром виде помещают в фотоаппарат и фотографируют объект. Проявляют ее в растворе пирогалловой кислоты, или пирогаллола, и закрепляют в растворе тиосульфата натрия.

Пластинки нельзя было сушить, так как коллодион принтом растрескивался и отслаивался от стекла. Это явилось существенным недостатком мокрого коллодионного процесса, и применяли его в основном в стационарных фотоателье. Были и энтузиасты - фотографы-пейзажисты, бравшие с собой при выезде на съемки походные лаборатории в виде палаток, которые транспортировали а собранном виде на тележках.

Одновременно с совершенствованием мокрого коллодионного процесса велись работы теоретического характера. В 1855- 1861 гг. английский физик Д. К. Максвелл разрабатывает теорию трехцветной фотографии.

В связи с недостатками мокрого коллодионного процесса многими исследователями делались попытки заменить коллодий другими веществами. Так, в 90-х годах 19 века проводились опыты по применению желатины в качестве связующей среды эмульсионного слоя. В этот период в одной из работ был описан щелочной проявитель, содержащий в своем составе органическое проявляющее вещество.

Основываясь на работах предшественников, англичанин Ричард Медокс, врач по специальности, предложил в 1871 г. первый практически пригодный способ изготовления бромосеребряной желатиновой эмульсии. Благодаря этому способу появилась возможность не только сохранять фотопластинки в сухом виде, но и значительно повысить их светочувствительность. Следует отметить, что основной метод современной фотографии также основан на применении галогенидосеребряных желатиновых фотослоев. Со времени изобретения этот способ претерпел значительные усовершенствования. Была повышена общая светочустветельность фотослоя, а также расширена зона его спектральной чувствительности вплоть до инфракрасных лучей. Принцип очувствления фотографических пластинок к длинноволновой области спектра был разработан в 1873 г. немецким ученым Г. В. Фогелем. Для этих целей,- т. е. для ортохроматизации фотопластинок, им был использован кораллин.

В конце 80-х годов XIX в. американской фирмой "Кодак" было освоено производство негативных фотопленок на гибкой подложке из целлулоида.

Таким образом, весь период развития фотографии можно условно разделить на три этапа: дагеротипия, мокрый коллодионный процесс и процесс с использованием галогенидосеребряных желатиновых эмульсий.

Несмотря на обилие фотографов, зачастую самоиспечённых, мало кто сможет детально поведать об истории фотокадров. Именно этим мы сегодня и займёмся. Прочитав статью, вы узнаете: что такое камера обскура, какой материал стал основой для первого фотоснимка и как появилась моментальная фотография.

С чего всё начиналось?

О химических свойствах солнечного света люди знали очень давно. Ещё в древности любой человек мог сказать, что солнечные лучи делают цвет кожи более тёмным, догадывались о воздействии света на вкус пива и искрение драгоценных камней. История насчитывает более тысячи лет наблюдений за поведением тех или иных предметов под воздействием ультрафиолетового излучения (именно такой вид излучения характерен для солнца).

По-настоящему применять первый аналог фотографии стали ещё в X веке нашей эры.

Применение это заключалось в так называемой камере обскура. Представляет она собой полностью тёмное помещение, одна из стен которого имела круглое отверстие, пропускающей свет. Благодаря ему на противоположной стене появлялась проекция изображения, которое художники того времени «дорабатывали» и получали красивые рисунки.

Изображение на стенах было перевёрнутым, но это не делало его менее красивым. Открыл такое явление арабский учёный из Басры по имени Альгазен. Он на протяжении долгого времени занимался наблюдением за световыми лучами, а явление камеры обскура впервые было замечено им на затемнённой белой стене своей палатки. Использовал учёный её для наблюдения за затемнениями солнца: уже тогда понимали, что смотреть на солнце напрямую очень опасно.

Первая фотография: предпосылки и успешные попытки.

Главной предпосылкой можно назвать доказательство Иоганном Генрихом Шульцем в 1725 году того, что именно свет, а не тепло, заставляет серебряную соль становиться тёмной. Сделал он это случайно: пытаясь создать светящееся вещество, он перемешал мел с азотной кислотой, и c небольшой долей растворённого серебра. Он заметил, что под влиянием солнечных лучей белый раствор темнеет.

Это натолкнуло учёного на ещё один эксперимент: он попытался получить изображение букв и цифр, вырезая их на бумаге и прикладывая к освещаемой стороне сосуда. Изображение он получил, но у него даже мыслей не было о его сохранении. На основе работ Шульца, учёный Гротгус установил, что поглощение и излучение света происходит под влиянием температуры.

Позднее, в 1822 году, было получено первое в мире изображение, более-менее привычное для современного человека. Получил его Жозеф Ньсефор Ньепс, но кадр, который он получил, не сохранился должным образом. Из-за этого он продолжил работу с большим усердством и получил 1826 году, полноценный кадр, названный «Вид из окна». Именно он вошёл в историю как первая полноценная фотография, хоть и до привычного нам качества было ещё далеко.

Применение металлов – существенное упрощение процесса.

Спустя несколько лет, в 1839 году ещё один француз Луи-Жак Дагер опубликовал новый материал для получения фотографий: медные пластины, покрытые серебром. После этого, пластину обдавали парами йода, из-за чего создавался слой светочувствительного йодида серебра. Именно он был ключевым для будущей фотографии.

После обработки слой подвергался 30-минутному экспонированию в освещённом солнечным светом помещении. Далее пластину относили в тёмную комнату и обрабатывали парами ртути, а закреплялся кадр при помощи поваренной соли. Именно Дагера принято считать создателем первого более-менее качественного фотоснимка. Такой способ хоть и был далёк от «простых смертных», но уже был существенно проще первого.

Цветная фотография – прорыв своего времени.

Многие думают, что цветная фотография появилась только с созданием плёночных фотоаппаратов. Это вовсе не так. Годом создания первого цветного фотоснимка принято считать 1861, именно тогда Лжеймс Максвелл получил изображение, позже названое «Тартановой лентой». Для создания использовался метод трёхцветной фотографии или метод цветоделения, тут уж как кому больше нравится.

Для получения этого кадра было использовано три камеры, каждая из которых оснащалась специальным фильтром, составляющие основные цвета: красный, зелёный и синий. Как итог, получалось три изображения, которые объединялись в одно, но такой процесс нельзя было назвать простым и быстрым. Чтобы упростить его велись бурные исследования светочувствительных материалов.

Первым шагом к упрощению было выявление сенсибилизаторов. Их открыл Герман Фогель, учёный из Германии. Спустя некоторое время, ему удалось получить слой, чувствительный к зелёному цветовому спектру. Позднее, его ученик Адольф Мите создал сенсибилизаторы, чувствительные к трём основным цветам: красному, зелёному и синему. Своё открытие он продемонстрировал в 1902 году на берлинской научной конференции вместе с первым цветным проектором.

Один из первых в России учёных-фотохимиков Сергей Прокудин-Горский, ученик Мите, разработал более чувствительный к красно-оранжевому спектру сенсибилизатор, что позволило ему превзойти учителя. Также он сумел уменьшить выдержку, сумел сделать снимки более массовыми, то есть создал все возможности для тиражирования фотографий. На основе изобретений этих учёных были созданы специальные фотопластины, которые, несмотря на недостатки, были крайне востребованы среди рядовых потребителей.

Моментальная фотография – очередной шаг к ускорению процесса.

Вообще, годом появления такого вида фотографии принято считать 1923, когда был зафиксирован патент на создание «моментального фотоаппарата». Толку от такого аппарата было мало, комбинация из камеры и фотолаборатории была крайне громоздкой и не сильно уменьшало время получения кадра. Понимание проблемы пришло немного позже. Заключалось оно в неудобстве процесса получения готового негатива.

Именно в 30-х годах впервые появились сложные светочувствительные элементы, позволяющие получать готовый позитив. Их разработкой на первых парах занималась фирма Agfa, а массово ими занялись ребята из Polaroid. Первые фотоаппараты компании позволяли получать моментальные фотографии сразу после съёмки кадра.

Немногим позднее похожие идеи пытались реализовать и в СССР. Здесь создавались фотокомплекты «Момент», «Фотон», однако популярности они не сыскали. Главная причина – отсутствие уникальных светочувствительных плёнок для получения позитива. Именно принцип, заложенный этими аппаратами, стал одним из ключевых и самых популярных в конце XX – начале XXI века, особенно в Европе.

Цифровая фотография – резкий скачок в развитии индустрии.

По-настоящему зародился такой вид фотографии совсем недавно – в 1981 году. Основателями смело можно считать японцев: компания Sony показала первый аппарат, в котором матрица заменила фотоплёнку. Все же знают, чем цифровая камера отличается от плёночной, верно? Да, он не мог называться качественным цифровым фотоаппаратом в современном понимании, но первый шаг был на лицо.

В дальнейшем, похожую концепцию развивало множество компаний, но первый цифровой аппарат, каким его привыкли видеть, создала компания Kodak. Серийно камеру начали выпускать в 1990 году, и она почти сразу стала супер популярной.

В 1991 году компания Kodak совместно с Nikon выпускают профессиональный цифровой зеркальный фотоаппарат Kodak DSC100 на основе фотокамеры Nikon F3. Весил такой аппарат 5 килограмм.

Стоит отметить, что с приходом именно цифровых технологий стала более обширна сфера применения фотографии.
Современные же камеры, как правило, подразделяются на несколько категорий: профессиональные, любительские и мобильные. В целом, они между собой отличаются только размером матрицы, оптикой и алгоритмами обработки. Из-за малого количества различий, грань между любительскими и мобильными камерами постепенно стирается.

Применение фотографии

Ещё в середине прошлого столетия сложно было представить, что чёткие изображения в газетах и журналах станут обязательным атрибутом. Особенно ярко бум фотографии проявился с появлением цифровых камер. Да, многие скажут, что плёночные фотоаппараты были лучше и популярнее, но ведь именно цифровые технологии позволили избавить фотоиндустрию от таких проблем, как закончившаяся плёнка или наложение кадров друг на друга.

Более того, современная фотография переживает крайне интересные изменения. Если раньше, к примеру, для получения фотографии в паспорте нужно было отстоять длинную очередь, сделать снимок и ждать ещё несколько дней до его печати, то сейчас достаточно просто сфотографировать себя на белом фоне с определёнными требованиями на телефон и напечатать снимки на специальной бумаге.

Художественная фотография тоже шагнула далеко вперёд. Раньше было сложно получить высоко детализированный кадр горного пейзажа, сложно было обрезать ненужные элементы или сделать качественную обработку фотографии. Сейчас замечательные кадры получают даже мобильные фотографы, готовые без особых проблем составить конкуренцию карманным цифровым камерам. Конечно, конкурировать с полноценными камерами, типа Canon 5D смартфоны не могут, но это тема для отдельного разговора.

Цифровая зеркалка для новичка 2.0 — для ценителей NIKON.

Моя первая ЗЕРКАЛКА — для ценителей CANON.

Итак, дорогой читатель, теперь вы знаете немного больше об истории фотографии. Надеюсь, этот материал станет полезным для вас. Если это так, то почему бы не подписаться на обновление блога и друзьям про него не рассказать? Тем более вас ждёт ещё масса интересных материалов, которые позволят вам стать более грамотными в вопросах фотографии. Удачи вам и спасибо за уделённое внимание.

Искренне ваш, Тимур Мустаев.

Первое упоминание о создании изображения на стене было сделано в Китае за пять веков до нашей эры. Однако фактическое начало развития фотографии в современном понимании относится к 1828 году, когда был создан первый снимок, запечатлевший человеческую фигуру. Это стало возможным в результате открытия в 1634 году химиком Гомбергом светочувствительности азотнокислого серебра, а врачом Шульце в 1727 году была обнаружена чувствительность хлористого серебра к свету. Затем Честером Муром был разработан объектив-ахромат, шведский химик Шееле сделал возможным обеспечить устойчивость снимков к свету (1777 год).

Интересная и познавательная история изобретения фотографии будет поведана читателю далее.

Зарождение фотодела

Многочисленные опыты по созданию устойчивого фотоснимка привели к получению на латунной пластинке по технологии гелиографии (1827 г.) устойчивого снимка, дошедшего до наших дней. Официальное сообщение об открытии Дагера и Ньепса дагеротипии, сделанное в январе 1839 года физиком Франсуа Араго на заседании Академии наук в Париже, признано датой изобретения фотографии официально.

Развитие фотографии на первом этапе

В своем развитии XIX век, который характеризуется промышленными, кардинальными социальными изменениями, сделал изобретение фотографии необходимостью. Активно развивающееся динамичное общество уже не могло удовлетворить рукотворное изображение. В начале своего появления фотоснимки носили прикладной характер и воспринимались как вспомогательное средство. К примеру, с целью документирования ботанических образцов или для фиксации конкретных объектов, событий, запечатления найденных артефактов. Распространенное ныне фотографирование людей и других живых объектов на заре фотографии, изобретения 19 века, было затруднительным и дорогостоящим процессом.

Получение негатива состоит из нескольких этапов:

  1. Подготовленную серебряную пластину помещают в камеру-обскуру.
  2. После открытия объектива появляется чуть заметное изображение в слое йодистого серебра под действием солнечных лучей.
  3. Закрепление изображения проводилось обработкой парами ртути в темноте вынутой пластины и последующей обработкой раствором поваренной соли (гипосульфита).

Альтернативные методы

Изобретением фотографии занимались многие ученые. Так, английский изобретатель Фоке Тальбот, работавший в тот же период, что и французы, получил фотографию, изобретение века, другим способом. В камере-обскуре изображение получают на пропитанной светочувствительным раствором бумаге. Затем снимок проявляют и закрепляют, а уже с негатива печатают позитивное изображение на специальной бумаге.

Недостатком обоих методов является необходимость длительного стояния (30 минут) перед камерой в неподвижном состоянии. Кроме того, использование паров нагретой ртути для получения дагерротипа небезопасно для здоровья.

Изобретение цветной фотографии

Между фотографией в черно-белом цвете и цветной лежит расстояние длиной в 30 лет. Английский физик и математик Джеймс Максвелл с помощью фильтров разного цвета сделал три цветных снимка одного и того же предмета. Следующим стало изобретение Луи Хайрона из Франции. Для получения цветных фотографий он использовал сенсибилизированные хлорофиллом фотоматериалы. Экспонируя через цветные светофильтры черно-белые пластины, он получал цветоделенные негативы. Затем изображения с трех негативов сводились в одно с помощью хроноскопа, и получался цветной снимок.

Усовершенствование цветной фотографии

Луи Дюко дю Орон, копируя три негатива на желатиновые позитивы, окрашенные в соответствующие цвета, упростил процесс получения цветной фотографии (кратко об изобретении вам уже известно). Сложенные в сэндвич три желатиновых позитива, освещенные белым светом, проецировались одним аппаратом. В то время воплотить свою идею в жизнь изобретатель не смог из-за низкого уровня технологии фотоэмульсии. В дальнейшем его метод стал основой для появления многослойных фотоматериалов, которыми являются современные цветные пленки. В 1861 году на основе трехцветной технологии Томасом Саттоном был сделан впервые в мире цветной снимок. Неплохие снимки получались с помощью фотопластинок «Братьев Люмьер», которые начали продаваться с 1907 года.

Дальнейшее развитие цветной фотографии

Настоящий прорыв в создании изображений в цвете был сделан с изобретением в 1935 году цветной фотопленки 35 мм. Удивительно высокое качество изображения получалось благодаря цветной пленке Kodachrome 25, которая только недавно была снята с производства. Качество пленки настолько высокое, что и спустя полвека сделанные в то время слайды выглядят так же, как и при проявке. Недостатком является то, что красители вводились на стадии правки, что было возможно только в лаборатории, находящейся в Канзасе.

Первая негативная пленка, позволяющая получить цветные снимки, была выпущена "Кодаком" в 1942 году. Однако вплоть до 1978 года, когда проявка пленки стала доступной и в домашних условиях, цветные слайды Kodachrome были самыми популярными и распространенными.

Аппаратура для фотосъемки

Первым фотоаппаратом считается разработанная английским фотографом Сэттоном в 1861 году модель, состоящая из большого ящика с крышкой наверху и штатива. Крышка не пропускала свет, но через нее можно было смотреть. В ящике с помощью зеркал формировалось изображение на стеклянной пластине. Активное развитие фотографии датируется 1889 годом, когда Джорджем Истменом была запатентована быстрая фотокамера, названная им «Кодак».

Следующим шагом в фотоиндустрии стало создание в 1914 году немецким изобретателем по имени О. Барнак небольшой фотокамеры, в которую заправлялась пленка. На основании этой идеи спустя десять лет фирма Leitz Company под маркой Leica начала массовый выпуск пленочных фотоаппаратов с функциями фокусировки и задержки при съемке. Такой аппарат дал возможность значительному количеству фотолюбителей делать снимки без участия профессионалов. Выпуск в 1963 году аппаратов Polaroid, где снимок получается мгновенно, привел к настоящей революции в сфере фотографирования.

Цифровые фотоаппараты

Развитие электроники привело к появлению цифровой фотографии. Пионером в этом направлении стала компания Fujifilm, которая в 1978 году выпустила первую цифровую фотокамеру. Принцип их действия основан на изобретении Бойла и Смита, которые предложили прибор с зарядовой связью. Первый цифровой аппарат весил три килограмма, а снимок записывался в течение 23 секунд.

Массовое активное развитие цифровых фотокамер датируется 1995 годом. На современном рынке фотоиндустрии предлагаются в огромном ассортименте модели цифровых фотокамер, видеокамер, мобилок со встроенными фотокамерами. В них за получение красивого снимка отвечает богатое программное обеспечение. К тому же на компьютере можно дополнительно откорректировать цифровое фото.

Этапы создания фотоматериалов

Открытия в сфере фотоиндустрии были связаны со стремлением запечатлеть визуальную информацию техническими средствами, добиться четких, точных изображений. Такие снимки имеют познавательную, художественную ценность и значение для общества и отдельных индивидов. Главным в этом является поиск способов закрепления и получения устойчивого изображения любого объекта.

Первая фотография была получена с помощью камеры-обскуры на покрытой тонким асфальтовым слоем металлической пластине. Изобретение в 1871 году Ричардом Мэддоксом желатинной эмульсии сделало возможным в промышленных условиях производить фотоматериалы.

Лавандовое масло и керосин использовались для вымывания асфальта из незакрепленных и неосвещенных мест. Совершенствуя изобретение Ньепса, Дагер предложил для экспонирования серебряную пластину, которую спустя полчаса выдержки в темной комнате держал над парами ртути. Закреплялось изображение раствором поваренной соли. В методе Тальбота, который он назвал капотонией и который был предложен в то же время, что и дагеротип, использовалась бумага, покрытая слоем хлорида серебра. Бумажные негативы Тальбота позволяли делать большое количество копий, но изображение было нечетким.

Желатиновая эмульсия

Предложение Истмена поливать желатиновую эмульсию на целлулоид, появившийся в 1884 году новый материал, привело к появлению фотопленки. Замена тяжелых пластин, которые могли повредиться при неосторожном обращении, на целлулоидную пленку не только облегчило работу фотографов, но и открыло новые горизонты конструирования фотокамер.

Братья Люмьер предложили производить пленку в виде рулона, а Эдисон усовершенствовал ее перфорацией, и с 1982 года и до сегодня она используется в таком же виде. Единственной заменой была то, что вместо горючего целлулоида применяют целлюлозно-ацетатный материал. Изобретение фотоэмульсии позволило заменить бумагу, металлические пластины и стекло на более подходящий материал. Последним достижением стала замена рулонной пленки на цифру.

Развитие фотодела в России

Самый первый дагерротипный прибор в России появился буквально через год после изобретения фотографии. Алексей Греков, начиная с 1840 года, наладил изготовление дагеротипных аппаратов, предлагал сервисные и консультативные услуги. Большой мастер фотографии Левицкий предложил существенное улучшение прибора в виде кожаного меха между стойкой и корпусом аппарата. Грекову принадлежит первенство применения фотографии в полиграфии. В России XIX века были изобретены:

  1. Стереоскопический аппарат.
  2. Шторный затвор.
  3. Автоматическая регулировка выдержки.

В советское время было разработано и внедрено в производство более двухсот моделей фотоаппаратов. В настоящее время внимание изобретателей направленно на повышение уровня разрешающей способности.

Сведения об изобретении кинематографа

Фотография была одним из первых шагов к кинематографу. Изначально многие ученые трудились над тем, чтобы создать аппарат, который бы мог оживить рисунок. После появления фотографии, в 1877 году, была изобретена хронофотография - разновидность фотографии, позволяющая записать движение объекта при помощи фотосъемки. Это был существенный шаг в развитии кинематографа. Изобретение фотографии - одно из самых значимых достижений XIX века. И с этим сложно поспорить.

Довольно сложно научиться хорошо фотографировать если не знаешь основ и главных терминов и понятий в фотографии. Поэтому задача данной статьи — дать общее понимание того, что есть фотография, как работает фотоаппарат и познакомиться с основными фотографическими терминами.

Так как на сегодняшний день, пленочная фотография уже стала в основном историей, то речь дальше пойдет про цифровую фотографию. Хотя 90% всей терминологии неизменно, а принципы получения фотографии одни и те же.

Как получается фотография

Термин фотография означает рисование светом. Фактически, фотоаппарат фиксирует свет попадающий через объектив, на матрицу и на основе этого света формируется изображение. Механизм того, как на основе света получается изображение — довольно сложен и на эту тему написано много научных трудов. По большому счету, детальное знание данного процесса не столь необходимо.

Как же происходит формирование изображения?

Проходя через объектив, свет попадает на светочувствительный элемент, который его фиксирует. В цифровых камерах этим элементом является матрица. Матрица изначально закрыта от света шторкой (затвор фотоаппарата), которая при нажатии кнопки спуска убирается на определенное время (выдержка), позволяя свету в течении этого времени воздействовать на матрицу.

Результат, то есть сама фотография, напрямую зависит от количества света, попавшего на матрицу.

Фотография — это фиксация света на матрице фотоаппарата

Типы цифровых фотоаппаратов

По большому счету можно выделить 2 основных типа фотокамер.

Зеркальные (DSLR) и без зеркальные. Основная разница между ними в том, что в зеркальном фотоаппарате, через установленное в корпусе зеркало, вы видите в видоискателе изображение непосредственно через объектив.
То есть «что вижу — то снимаю».

В современных без зеркальных для этого используются 2 приема

  • Видоискатель оптический и расположен в стороне от объектива. При съемке надо делать небольшую поправку на смещение видоискателя относительно объектива. Обычно используется на «мыльницах»
  • Электронный видоискатель. Самый простой пример — передача изображения прямо на дисплей фотокамеры. Обычно используется на мыльницах, но в зеркальных камерах этот режим часто используется вместе с оптическим и называется Live View.

Как работает фотоаппарат

Рассмотрим работу зеркальной камеры, как наиболее популярного варианта, для тех кто действительно хочет чего то добиться в фотографии.

Зеркальная камера состоит из корпуса (обычно — «тушка»,»боди» — от английского body) и объектива («стекло», «линза»).

Внутри корпуса цифровой камеры стоит матрица, которая фиксирует изображение.

Обратите внимание на схему выше. Когда вы смотрите в видоискатель, свет проходит через объектив, отражается от зеркала,затем преломляется в призме и попадает в видоискатель. Таким образом вы видите через объектив то, что будете снимать. В момент, когда вы нажимаете спуск, зеркало поднимается, открывается затвор, свет попадает на матрицу и фиксируется. Таким образом получается фотография.

Теперь перейдем к основным терминам.

Пиксель и мегапиксель

Начнем с термина «новой цифровой эры». Он относится скорее к компьютерной области, чем к фото, но тем не менее важен.

Любое цифровое изображение создается из маленьких точек, которые называются пикселями. В цифровой фотографии — количество пикселей на снимке ровняется количеству пикселей на матрице камеры. Собственно матрица и состоит из пикселей.

Если вы многократно увеличите любой цифровой снимок, то заметите что изображение состоит из маленьких квадратиков — это и есть пиксели.

Мегапиксель — это 1 миллион пикселей. Соответственно, чем больше мегапикселей в матрице фотоаппарата, тем из большего числа пикселей состоит изображение.

Если сильно увеличить фото — можно увидеть пиксели

Что дает большое количество пикселей? Все просто. Представьте что вы рисуете картину не штрихами, а ставя точки. Сможете ли вы нарисовать круг, если у вас есть всего 10 точек? Возможно получится это сделать, но скорее всего круг будет «угловатым». Чем больше точек, тем более детальным и точным получится изображение.

Но тут кроется два подвоха, успешно эксплуатируемые маркетологами. Во первых — одних лишь мегапикселей мало для получения качественных снимков, для этого еще нужен качественный объектив. Во вторых — большое количество мегапикселей важно для печати фотографий в большом размере. Например для постера во всю стену. При просмотре снимка на экране монитора, особенно уменьшенного под размер экрана — разницы между 3 или 10 мегапикселями вы не увидите по простой причине.

В экран монитора обычно влезает намного меньше пикселей, чем содержится в вашем снимке. То есть на экране, при сжатии фотографии до размеров экрана и менее, вы теряете бОльшую часть своих «мегапикселей». И 10 мегапиксельный снимок превратится в 1мегапиксельный.

Затвор и выдержка

Затвор — это то, что закрывает матрицу фотоаппарата от света, пока вы не нажали на кнопку спуска.

Выдержка — это то время, на которое открывается затвор и приподнимается зеркало. Чем меньше выдержка — тем меньше света попадет на матрицу. Чем больше время выдержки — тем больше света.

В яркий солнечный день, чтобы на матрицу попало достаточное количество света, вам потребуется очень короткая выдержка — например, всего лишь 1/1000 секунды. Ночью, чтобы получить достаточное количество света, может потребоваться выдержка в несколько секунд и даже минут.

Выдержка определяется в долях секунды или в секундах. Например 1/60сек.

Диафрагма

Диафрагма это многолепестковая перегородка находящаяся внутри объектива. Она может быть полностью открыта или закрыта настолько, что остается всего лишь маленькое отверстие для света.

Диафрагма так же служит для ограничения количества света попадающего в итоге на матрицу объектива. То есть выдержка и диафрагма выполняют одну задачу — регулирование потока света попадающего на матрицу. Зачем же использовать именно два элемента?

Строго говоря, диафрагма не является обязательным элементом. Например в дешевых мыльницах и камерах мобильных устройств она отсутствует как класс. Но диафрагма крайне важна для достижения определенных эффектов связанных с глубиной резкости, о которой речь пойдет далее.

Диафрагма обозначается буквой f за которой через дробь стоит число диафрагмы, например, f/2.8. Чем меньше число, тем больше раскрыты лепестки и шире отверстие.

Светочувствительность ISO

Грубо говоря это чувствительность матрицы к свету. Чем выше ISO тем матрица восприимчивее к свету. Например, для того чтобы получить хороший снимок при ISO 100 вам потребуется определенное количество света. Но если света мало, вы можете поставить ISO 1600, матрица станет более чувствительной и хорошего результата вам потребуется в несколько раз меньше света.

Казалось бы в чем проблема? Зачем делать разное ISO если можно сделать максимальное? Причин несколько. Во первых — если света очень много. Например, зимой в яркий солнечный день, когда кругом один снег, у нас встанет задача ограничить колоссальное количество света и большое ISO будет только мешать. Во вторых (и это главная причина) — появление «цифрового шума».

Шум это бич цифровой матрицы, который проявляется в появлении «зернистости» на фотографии. Чем выше ISO тем больше шума, тем хуже качество фото.

Поэтому количество шума на высоких ISO один из важнейших показателей качества матрицы и предмет постоянного совершенствования.

В принципе, показатели шума на высоких ISO у современных зеркалок, особенно топового класса находятся на довольно хорошем уровне, но до идеала еще далеко.

Из за технологических особенностей, количество шума зависит от реальных, физических размеров матрицы и размеров пикселей матрицы. Чем меньше матрица и чем больше мегапикселей — тем выше шумы.

Поэтому «кропнутые» матрицы фотокамер мобильных устройств и компактных «мыльниц» всегда будут шуметь намного больше чем у профессиональных зеркалок.

Экспозиция и экспопара

Познакомившись с понятиями — выдержка, диафрагма и чувствительность, перейдем к самому главному.

Экспозиция является ключевым понятием в фотографии. Не понимая что такое экспозиция — вы вряд ли научитесь хорошо фотографировать.

Формально экспозиция - это величина засветки светочувствительного сенсора. Грубо говоря — количество света попавшего на матрицу.

От этого будет зависеть ваш снимок:

  • Если он получился слишком светлый — то изображение переэкпонированное, на матрицу попало слишком много света и вы «засветили» кадр.
  • Если снимок слишком темный — изображение недоэкспонированное, нужно чтобы на матрицу попало больше света.
  • Не слишком светлый, не слишком темный — значит экспозиция выбрана правильно.

Слева направо — переэкпонированный снимок, недоэкспонированный и правильно экспонированный

Экспозиция формируется подбором комбинации выдержки и диафрагмы, которая еще называется «экспопара». Задача фотографа, подобрать комбинацию так, чтобы обеспечить необходимое количество света для создания изображения на матрице.

При этом надо учитывать чувствительность матрицы — чем выше ISO, тем меньше должна быть экспозиция.

Точка фокусировки

Точка фокусировки или просто фокус — это та точка, на которую вы «навели резкость». Сфокусировать объектив на предмете, значит таким образом подобрать фокусировку, чтобы этот предмет получился максимально резким.

В современных камерах обычно используется автофокус, сложная система позволяющая автоматически фокусироваться на выбранной точке. Но принцип работы автофокуса зависит от множества параметров, например от освещенности. При плохом освещении автофокус может промахиваться или вообще окажется неспособен выполнить свою задачу. Тогда придется переключиться на ручную фокусировки и надеяться на свой собственный глаз.

Фокусировка по глазам

Точку, на которой будет фокусироваться автофокус — видно в видоискателе. Обычно это маленькая красная точка. Изначально она стоит по центру, но на зеркальных камерах вы можете выбрать другую точку для лучшей компоновки кадра.

Фокусное расстояние

Фокусное расстояние — это одна из характеристик объектива. Формально эта характеристика показывает расстояние от оптического центра объектива до матрицы, где образуется резкое изображение объекта. Фокусное расстояние измеряется в миллиметрах.

Важнее физическое определение фокусного расстояния, а в чем практический эффект. Тут все просто. Чем больше фокусное расстояние, тем сильнее объектив «приближает» объект. И тем меньше «угол зрения» объектива.

  • Объективы с небольшим фокусным расстоянием называют широкоугольными («ширики») — они ничего не «приближают» но зато захватывают большой угол зрения.
  • Объективы с большим фокусным расстоянием — называют длиннофокусными, или телеобъективами («телевик»).
  • называют «фиксами». А если вы можете менять фокусное расстояние, то это «объектив с трансфокатором», а проще говоря — зум объектив.

Процесс зуммирования — это процесс изменения фокусного расстояния объектива.

Глубина резкости или ГРИП

Еще одним важным понятием в фотографии является ГРИП — глубина резко изображаемого пространства. Это та зона за точкой фокусировки и перед ней, в пределах которой объекты в кадре выглядят резкими.

При небольшой глубине резкости — предметы будут размыты уже в нескольких сантиметрах или даже миллиметрах от точки фокусировки.
При большой глубине резкости — резкими могут быть предметы на расстоянии десятков и сотен метров от точки фокусировки.

Глубина резкости зависит от значения диафрагмы, фокусного расстояния и расстояния до точки фокусировки.

Подробнее про то, от чего зависит глубина резкости можно прочитать в статье « »

Светосила

Светосила — это пропускная способность объектива. Другими словами — это максимальное количество света, которое объектив способен пропустить к матрице. Чем больше светосила, тем лучше и тем дороже объектив.

Светосила зависит от трех составляющих — минимально возможной диафрагмы, фокусного расстояния, а так же от качества самой оптики и оптической схемы объектива. Собственно качество оптики и оптическая схема как раз и влияют на цену.

Не будем углубляться в физику. Можно сказать что светосила объектива выражается отношением максимально открытой диафрагмой к фокусному расстоянию. Обычно именно светосилу производители указывают на объективах в виде числа 1:1.2, 1:1.4, 1:1.8, 1:2.8, 1:5.6 и т.п.

Чем больше соотношение, тем больше светосила. Соответственно, в данном случае, самым светосильным будет объектив 1:1.2

Carl Zeiss Planar 50мм f/0.7 — один из самых светосильных объективов в мире

К выбору объектива по светосиле надо относиться разумно. Так как светосила зависит от диафрагмы, то светосильный объектив на минимальной диафрагме будет иметь очень небольшую глубину резкости. Поэтому есть шанс, что вы никогда не воспользуетесь f/1.2, так как просто не сможете толком сфокусироваться.

Динамический диапазон

Понятие динамического диапазона так же очень важно, хотя вслух звучит не очень часто. Динамический диапазон — это способность матрицы, передать без потерь одновременно яркие и темные участки изображения.

Вы наверняка замечали, что если попытаться снять окно находясь в центре комнаты, то на снимке получится два варианта:

  • Хорошо получится стена, на которой расположено окно, а само окно будет просто белым пятном
  • Хорошо будет виден вид из окна, но стена вокруг окна превратится в черное пятно

Это происходит из за очень большого динамического диапазона подобной сцены. Разница в яркости внутри комнаты и за окном, слишком большая, чтобы цифровой фотоаппарат смог ее воспринять целиком.

Другой пример большого динамического диапазона — пейзаж. Если небо яркое, а низ достаточно темный, то или небо на снимке будет белым или низ черным.

Типичный пример сцены с большим динамическим диапазоном

Мы видим все нормально, потому что динамический диапазон воспринимаемый человеческим глазом намного шире чем тот, что воспринимают матрицы фотоаппаратов.

Брекетинг и экспокоррекция

В экспозицией связано еще понятие — брекетинг. Брекетинг, это последовательная съемка нескольких кадров с разной экспозицией.

Обычно используется так называемый автоматический брекетинг. Вы задаете камере количество кадров и смещение экспозиции в ступенях (стопы).

Чаще всего используется три кадра. Допустим мы хотим сделать 3 кадра во смещением в 0.3 стопа (EV). В этом случае камера сначала сделает один кадр с заданным значением экспозиции, затем с экспозицией смещенной на -0.3 стопа и кадр со смещением на +0.3 стопа.

В итоге вы получите три кадра — недоэкспонированный, переэкспонированный и нормально экспонированный.

Брекетинг может использоваться для более точного подбора параметров экспозиции. Например вы не уверены в том, что выбрали правильную экспозицию, снимаете серию с брекетингом, смотрите на результат и понимаете в какую сторону надо изменить экспозицию, в большую или меньшую.

Пример снимка с экспокоррекцией на -2EV и +2EV

После чего можно воспользоваться экспокоррекцией. То есть вы точно так же устанавливаете на камере — сделать кадр с экспокоррекцией +0.3 стопа и нажимаете на спуск.

Камера берет текущее значение экспозиции, добавляет к ней 0.3 стопа и делает кадр.

Экспокорекция бывает очень удобна для быстрой подстройки, когда вам некогда думать над тем, что нужно изменить — выдержку, диафрагму или чувствительность чтобы получить правильную экспозицию и сделать снимок светлее или темнее.

Кроп фактор и полнокадровая матрица

Это понятие пришло в жизнь вместе с цифровой фотографией.

Полнокадровым принято считать физический размер матрицы, равный размеру 35мм кадра на пленке. Ввиду стремления к компактности и стоимости изготовления матрицы, в мобильных устройствах, мыльницах и не профессиональных зеркалках устанавливают «кропированные» матрицы, то есть уменьшенные в размерах относительно полнокадровой.

Исходя из этого, полнокадровая матрица имеет кроп фактор равный 1. Чем больше кроп фактор — тем меньше площадь матрицы относительно полного кадра. Например при кроп факторе 2 — матрица будет в два раза меньше.

Объектив предназначенный для полного кадра, на кропнутой матрице захватит только часть изображения

В чем недостаток кропнутой матрицы? Во первых — чем меньше размер матрицы — тем выше шум. Во вторых 90% объективов, произведенных за десятилетия существования фото, расчитаны на размер полного кадра. Таким образом, объектив «передает» изображение в расчете на полный размер кадра, но маленькая кропнутая матрица воспринимает только часть этого изображения.

Баланс белого

Еще одна характеристика, появившаяся с приходом цифровой фотографии. Баланс белого — это подстройка цветов снимка для получения естественных оттенков. При этом отправной точкой служит чистый белый цвет.

При правильном балансе белого — белый цвет на фото (например бумага) выглядит действительно белым, а не синеватым или желтоватым.

Баланс белого зависит от типа источника света. Для солнца он один, для пасмурной погоды другой, для электрического освещения третий.
Обычно новички снимают на автоматическом балансе белого. Это удобно, так как камера сама выбирает нужное значение.

Но к сожалению, автоматика далеко не всегда так умна. Поэтому профи часто выставляют баланс белого вручную, используя для этого лист белой бумаги или другой предмет, имеющий белый цвет или максимально близкий к нему оттенок.

Другим способом является коррекция баланса белого на компьютере, уже после того как снимок сделан. Но для этого крайне желательно снимать в RAW

RAW и JPEG

Цифровая фотография это компьютерный файл с набором данных из которых формируется изображение. Самый распространенный формат файла для показа цифровых фотографий — JPEG.

Проблема в том, что JPEG — это так называемый формат сжатия с потерями.

Допустим у нас есть красивое закатное небо, в котором тысяча полутонов самых разных мастей. Если мы попытаемся сохранить все многообразие оттенков, размер файла будет просто огромен.

Поэтому JPEG при сохранении выкидывает «лишние» оттенки. Грубо говоря если в кадре есть синий цвет, чуть более синий и чуть менее синий, то JPEG оставит только один из них. Чем сильнее «сжат» Jpeg — тем меньше его размер, но тем меньше цветов и деталей изображения он передает.

RAW — это «сырой» набор данных зафиксированный матрицей фотоаппарата. Формально эти данные еще не являются изображением. Это исходное сырье для создания изображения. Благодаря тому, что RAW хранит полный набор данных, у фотографа появляется намного больше возможностей для обработки этого изображения, особенно если требуется какая то «коррекция ошибок» допущенных на стадии съемки.

Фактически при съемке в JPEG, происходит следующее, камера передает «сырые данные» микропроцессору фотоаппарата, он обрабатывает их согласно заложенным в него алгоритмам «чтобы получилось красиво», выкидывает все лишнее с его точки зрения и сохраняет данные в JPEG который вы и видите на компьютере как итоговое изображение.

Все бы хорошо, но если вы захотите что то изменить, может оказаться что нужные вам данные процессор уже выкинул как ненужные. Вот тут то и приходит на помощь RAW. Когда вы снимаете в RAW камера просто отдает вам набор данных, а дальше — делайте с ними что хотите.

Об это часто стукаются лбом новички — начитавшись, что RAW дает лучшее качество. RAW не дает лучшего качества сам по себе — он дает намного больше возможностей получить это лучшее качества в процессе обработки фотографии.

RAW это исходное сырье — JPEG готовый результат

Например загружайте в Lightroom и создавайте свое изображение «вручную».

Популярной практикой является одновременная съемка RAW+Jpeg — когда камера сохраняет и то и другое. JPEG можно использовать для быстрого просмотра материала, а если что не так и требуется серьезная коррекция, то у вас есть исходные данные в виде RAW.

Заключение

Надеюсь эта статья поможет тем, кто только хочет заняться фотографией на более серьезном уровне. Возможно некоторые термины и понятия покажутся вам слишком сложными, но не бойтесь. На самом деле все очень просто.

Если у вас есть пожелания и дополнения к статье — пишите в комментариях

Стремление запечатлеть моменты жизни, происходящие с человеком или окружающим его миром, существовало всегда. Об этом говорят и наскальные рисунки, и изобразительное искусство. В полотнах художников особо ценилась точность и детализация, способность запечатлеть объект в выгодном ракурсе, свете, передать цветовую палитру, тени. На такую работу порой уходили месяцы работы. Именно это желание, а также стремление сократить временные затраты и стали толчком для создания такого вида искусства, как фотография.

Появление фотографии

В IV веке до нашей эры Аристотель, знаменитый ученый из Древней Греции, заметил любопытный факт: свет, который просачивался через небольшую дырочку в ставне окна, повторял тенями на стене виднеющийся за окном пейзаж.

Далее в трактатах ученых из арабских стран начинает упоминаться словосочетание буквально означающее «темная комната». Это оказалось приспособление в виде ящика с отверстием спереди, при помощи которого стало возможным срисовывать натюрморты и пейзажи. Позже ящик усовершенствовали, снабдив двигающимися половинками и линзой, что сделало возможным фокусацию на картинке.

Благодаря новым возможностям, картинки стали намного ярче, а прибор получил название «светлой комнаты», то есть camera lucina. Такие нехитрые технологии позволили нам узнать, как выглядел Архангельск в середине XVII столетия. С их помощью была снята перспектива города, отличающаяся точностью.

Этапы развития фотографии

В XIX веке Жозефом Ньепсом был придуман способ фотографирования, названный им гелиогравюрой. Съемка данным методом происходила при ярком солнце и продолжалась до 8 часов. Суть его заключалась в следующем:

Бралась металлическая пластина, которую покрывали битумным лаком.

Пластина находилась под непосредственным воздействием яркого света, из-за которого лак не растворялся. Но процесс этот был неоднородным и зависел от силы освещения на каждом из участков.

После травили кислотой.

В результате всех манипуляций возникала рельефная, гравированная картина на пластине. Следующим значимым этапом в развитии фотографии стал дагерротип. Название свое способ получил от имени своего изобретателя, Луи Жака Манде Дагера, который смог получить изображение на серебряной пластине, обработанной йодными парами.

Следующим методом была калотипия, придуманная Генри Талботом. Достоинством способа была возможность делать копии одного изображения, которое, в свою очередь, воспроизводилось на бумаге, пропитанной солью серебра.

Первое знакомство с искусством фотографии в России

История русской фотографии продолжается уже более, чем полтора века. И история эта полна разных событий и интересных фактов. Благодаря людям, открывшим для нашей страны искусство фотографии, мы можем видеть Россию сквозь призму времени такой, какой она была много лет назад.

История фотографии в России начинается с 1839 года. Именно тогда член Академии Наук России И. Гамель поехал в Великобританию, где и познакомился с методом калотипии, подробно его изучив. После чего выслал подробное описание. Так и были получены первые фотографии, сделанные способом калотипии, которые до сих пор хранятся в Академии Наук в количестве 12 штук. На снимках имеется подпись изобретателя метода, Талбота.

После этого во Франции происходит знакомство Гамеля с Дагером, под руководством которого он собственноручно делает несколько снимков. Академией Наук в сентябре 1841 года было получено письмо от Гамеля, в котором, согласно его слов, находилась первая выполненная с натуры фотография. На сделанном в Париже фотоснимке - женская фигура.

После этого фотоискусство в России начало набирать обороты, стремительно развиваясь. Между XIX и XX столетиями фотографы из России начали на общих правах принимать участие в фотовыставках и салонах международного класса, на которых получали престижные награды и премии, имели членство в соответствующих сообществах.

Способ Талбота

История фотографии в России получила развитие благодаря людям, живо интересовавшимся новым видом искусства. Таким был и Юлий Федорович Фрицше, известный русский ботаник и химик. Он первым освоил метод Талбота, заключавшийся в получении негатива на светочувствительной бумаге с последующей его печатью на листе, обработанном солями серебра и проявляющемся при солнечном свете.

Фрицше сделал первые фотографии-калотипы листьев растений, после чего вступил перед Акадамией Наук в Санкт-Петербурге в мае 1839 года с докладом. В нем он сообщил, что находит метод калотипии подходящим для запечатления плоских предметов. Например, способ пригоден для выполнения снимков оригинальных растений с необходимой для ботаника точностью.

Вклад Ю. Фрицше

Благодаря Фрицше история фотографии в России шагнула чуть дальше: он предложил заменить гипосульфат натрия, которым пользовался для проявления картинки Талбот, на аммиак, чем заметно модернизировал калотипию, улучшив качество изображения. Юлий Федорович также был первым в стране и одним из первых в мире, кто провел исследовательскую работу по фотографии и фотоискусству.

Алексей Греков и «художественная кабина»

История фотосъемки в России продолжалась, и следующим свой вклад в ее развитие внес Алексей Греков. Московский изобретатель и гравер, он первым из русских мастеров фотографии овладел и калотипией, и дагерротипией. И если вы зададите вопрос о том, какими были первые фотоаппараты в России, то именно изобретение Грекова, «художественную комнату», можно считать таковым.

Первый фотоаппарат, созданный им в 1840 году, позволял сделать качественные, с хорошей резкостью портретные фотоснимки, что не удавалось многим пытавшимся этого добиться фотографам. Греков придумал кресло со специальными удобными подушечками, которые поддерживали голову фотографируемого, позволяя ему не устать за время долгого сидения и сохранять неподвижное положение. А быть неподвижным человеку в кресле приходилось долго: 23 минуты на ярком солнце, а в пасмурный день - все 45.

Мастера фотографии Грекова принято считать первым в России фотохудожником-портретистом. Добиться прекрасных портретных фотоснимков ему помогало и изобретенное им фотоустройство, состоящее из деревянной камеры, в которую не проникал свет. Но при этом коробки могли выдвигаться одна из другой и возвращаться на место. У внешней коробки на передней ее части он прикрепил линзу, представлявшую собой объектив. Во внутренней коробке находилась пластина, чувствительная к свету. Меняя расстояние между коробками, то есть двигая их одну из другой или наоборот, можно было добиться необходимой резкости снимка.

Вклад Сергея Левицкого

Следующим человеком, благодаря которому история фотографии в России стремительно продолжала развиваться, был Сергей Левицкий. В истории русской фотосъемки появились дагерроптипы Пятигорска и Кисловодска, сделанные им на Кавказе. А также золотая медаль художественной выставки, прошедшей в Париже, куда он и отправил снимки для участия в конкурсе.

Сергей Левицкий был в первых рядах фотографов, которые предложили менять декоративный фон для съемок. Им также было решено выполнять ретушь портретных фотографий и их негативов, чтобы уменьшить или вовсе удалить технические недостатки, если таковые имелись.

Левицкий уезжает в Италию в 1845 году, решая повысить уровень знаний и умений в области дагерротипии. Он делает снимки Рима, а также портретные фото русских художников, проживавших там. А в 1847 году придумывает фотографический аппарат со складным мехом, применив для этого мех от гармони. Новшество позволило фотоаппарату стать более мобильным, что в значительной степени отразилось на расширении возможностей фотосъемок.

Вернулся в Россию Сергей Левицкий уже профессиональным фотографом, открыв в Петербурге собственную дагерротипную мастерскую «Светопись». При ней он также открывает фотоателье с богатой коллекцией фотопортретов русских художников, писателей и общественных деятелей. Изучение искусства фотографии он не бросает, продолжая опытным путем изучать применение электрического света и его сочетания с солнечным и их влияние на снимки.

Русский след в фотоискусстве

Деятели искусств, мастера фотографии, изобретатели и ученые из России внесли большой вклад в историю и развитие фотоискусства. Так, среди создателей новых видов фотоаппаратов известны такие русские фамилии, как Срезневский, Езучевский, Карпов, Курдюмов.

Даже Дмитрий Иванович Менделеев принимал активное участие, занимаясь теоретическими и практическими проблемами изготовления фотоснимков. А совместно со Срезневским они стояли у истоков создания фотографического отдела в Русском техническом обществе.

Широко известны успехи яркого мастера русской фотографии, которого можно поставить на одну ступень с Левицким, Андрея Деньера. Он был создателем первого фотоальбома с портретами известных ученых, врачей, путешественников, писателей, артистов. А фотохудожник А. Карелин стал известен всей Европе и вошел в истории фотографии как основоположник жанра бытовой съемки.

Развитие фотоискусства в России

Интерес к фотографии в конце XIX века возрос не только среди специалистов, но и среди простого населения. И в 1887 годы был выпущен «Фотографический вестник», журнал, в котором была собрана информация по рецептам, химическим составам, методам обработки фотографии, теоретические данные.

Но до революции в России возможность заниматься художественной фотографией была доступна лишь малому количеству людей, так как практически ни у кого из изобретателей фотоаппарата не было возможности выпускать их в промышленном масштабе.

В 1919 году В. И. Ленин издал декрет о переходе фотографической промышленности под управление Наркомпроса, а в 1929 началось создание светочувствительных фотоматериалов, впоследствии ставших доступными всем. И уже в 1931 году появляется первый отечественный фотоаппарат «Фотокор».

Роль российских мастеров, фотохудожников, изобретателей в деле развития фотоискусства велика и занимает достойное место в мировой истории фотографии.

Похожие статьи

© 2024 videointercoms.ru. Мастер на все руки - Бытовая техника. Освещение. Металлобработка. Ножи. Электричество.